FISEVIER

Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Room-temperature Suzuki-Miyaura coupling of aryl bromides with phenylboronic acid catalyzed by a palladium complex with an inexpensive nitrogen-containing bis(phosphinite) ligand

Ioannis D. Kostas ^{a,*}, Alia-Cristina Tenchiu ^a, Cécile Arbez-Gindre ^a, Vassilis Psycharis ^b, Catherine P. Raptopoulou ^b

- ^a National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Vas. Constantinou 48, 11635 Athens, Greece
- b NCSR "Demokritos", Institute for Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, 15310 Aghia Paraskevi Attikis, Greece

ARTICLE INFO

Article history: Received 15 January 2014 Received in revised form 10 March 2014 Accepted 11 March 2014 Available online 20 March 2014

Keywords:
Bis(phosphinite)
Bite angle
Suzuki-Miyaura cross-coupling
Room temperature
Homogeneous catalysis
Biaryls

ABSTRACT

A palladium(II) complex with a known inexpensive and very easily synthesized nitrogen-containing bis(phosphinite) ligand has been prepared and characterized by spectroscopic and crystallographic studies. The ligand is bound to the metal in a *P,P*-bidentate coordination mode with a bite angle of 98.90°. This complex was found to be an efficient catalyst for room-temperature Suzuki–Miyaura coupling of a variety of aryl bromides with phenylboronic acid. At 0.1 mol% of palladium in DMF/K₃PO₄ for 24 h, the corresponding biaryls were obtained with 75–92% yields. Activated substrates displayed high yields even within minutes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Suzuki-Miyaura cross-coupling is a powerful synthetic method for preparing biaryls, leading to agrochemicals, pharmaceuticals, polymers and materials [1]. Ambient temperature catalysis has become a challenge of high importance considering both needs for low cost energy reactions and thermal instability of several substrates. Excellent activity for room-temperature Suzuki-Miyaura coupling has been reported for particular classes of phosphanes by Buchwald [2,3], Fu [4], Hartwig [5], Beller [6], and Dai [7], and N-heterocyclic carbenes by Herrmann [8], Glorius [9], Organ [10], Nolan [11], Nolan/Cazin [12, 13], and Dorta [14]. Recently, Zhou discovered that a combination of Pd(OAc)₂ and Buchwald's ligand XPhos could efficiently catalyze the room-temperature Suzuki-Miyaura coupling of heteroaryl chlorides/ tosylates even within minutes [15]. High activity has also been observed for mono- and bis(phosphinites) by Balakrishna [16,17]. Moreover, phosphinites have widely been used in homogeneous catalysis due to their facile preparation and their improved catalytic activity. Excellent activity in palladium-catalyzed Suzuki-Miyaura coupling has been reported for palladacyclic monophosphinite complexes by Bedford [18,19], bis(phosphinite) PCP-pincer complexes by Bedford [20], Uozumi [21], and Protasiewicz [22], and other symmetrical and unsymmetrical pincer complexes by Gong/Song [23]. However, the efficiency of phosphinites for room-temperature Suzuki–Miyaura coupling has rarely been investigated [16,17].

Ligands bearing phosphorus and nitrogen donors are of significant interest due to the improved catalytic activity of their transition metal complexes [24]. It has also been found that the presence of nitrogen as a stabilizing group in the ligand during the course of a metal-mediated reaction, improves its catalytic efficiency despite no metal-nitrogen interaction is observed in the complex. Indeed, a nitrogen-containing bis(phosphine) displayed a much higher activity in rhodium-catalyzed hydroformylation compared to its analogous ligand containing carbon instead of nitrogen on the backbone [25], and an amino-substituted P, S-phosphinite was also found to be a more efficient ligand in palladium-catalyzed Heck reaction [26] and in rhodium-catalyzed hydroformylation [27] compared to the ligand without an amino group, although no metal-nitrogen interaction was observable in all cases. We have previously reported an easy one-pot synthesis of a nitrogen-containing bis(phosphinite) from the very cheap Nphenyldiethanolamine, as an efficient ligand for rhodium-catalyzed hydroformylation [28]. Herein, we report the corresponding chelate palladium complex and its evaluation in room-temperature Suzuki-Miyaura coupling.

^{*} Corresponding author. Tel.: +30 210 7273878; fax: +30 210 7273831. *E-mail address*: ikostas@eie.gr (I.D. Kostas).

2. Experimental

2.1. Palladium dichloro{N,N-bis[2-[(diphenylphosphino-P)oxy]ethyl]-benzenamine} (3)

A solution of ligand **2** [28] (258 mg, 0.47 mmol) in dichloromethane (10 mL) was added dropwise under argon to a solution of (PhCN)₂PdCl₂ (180 mg, 0.47 mmol) in dichloromethane (5 mL) at ca. -70 °C or room temperature, and then stirred at room temperature overnight. The resulting solution was concentrated under reduced pressure to an approximate volume of 3 mL. Dry ether (15 mL) was added to cause precipitation of a solid, that was collected after decantation, washed with ether (2 × 10 mL) and then dried under vacuum, yielding **3** (320 mg, 94%) as a yellow-orange solid, m.p. (dec.) 160 °C. ¹H NMR (CDCl₃): δ 7.70–7.64 (m, 8H, Ar), 7.40–7.35 (m, 4H, Ar), 7.26–7.21 (m, 8H, Ar), 7.10 (t, ${}^{3}J = 8.0$ Hz, 2H, Ar), 6.68 (t, ${}^{3}J = 7.2$ Hz, 1H, Ar), 6.38 (d, ${}^{3}J = 8.1$ Hz, 2H, Ar), 3.71 (m, 4H, CH₂O), 3.56 (m, 4H, CH₂N); 13 C{¹H} NMR (CDCl₃): δ 145.93–111.86 (Ar), 65.59–65.48 (m, CH₂O), 52.41–52.29 (m, CH₂N); 31 P{¹H} NMR (CDCl₃): δ 107.37 (s); HRMS: calcd. for C₃₄H₃₃Cl₃NO₂P₂Pd [M + Cl]⁻ 760.0092, found 760.0092.

2.2. General experimental procedure for the Suzuki-Miyaura coupling

Aryl bromide (1.0 mmol), phenylboronic acid (0.183 g, 1.5 mmol), K_3PO_4 (0.425 g, 2.0 mmol), complex $\boldsymbol{3}$ in DMF (0.5 mM, 2 mL, 1.0 µmol) and dodecane (70 µL, 0.3 mmol) as internal standard were stirred at room temperature under argon for 24 h. After addition of water (5 mL) and extraction with dichloromethane (2 \times 10 mL), the organic phase was washed with brine (10 mL), dried over Na_2SO_4 , filtered, passed through celite and analyzed by GC and GC–MS. After evaporation of the volatiles, isolation of the pure biaryl was achieved by column chromatography on silica gel using hexane/AcOEt as eluent. All biaryls are known compounds and were characterized by 1H and ^{13}C NMR spectra.

3. Results and discussion

3.1. Synthesis and characterization of the palladium complex

Treatment of (PhCN)₂PdCl₂ with one equivalent of ligand **2** yielded complex **3** as a unique species regardless of whether the addition was conducted at low or at room temperature (Scheme 1). The presence of only one singlet at δ 107.37 in the ³¹P NMR spectrum of **3** and the absence of the signal corresponding to the free ligand at δ 114.63 [28] provided a clear evidence that both phosphorus atoms are bound to the metal and are equivalent. In the ¹H and ¹³C NMR spectra of **3**, the NCH₂ resonances are almost in the same position as those in the free ligand [28], contrary to a considerable downfield shifting expected for the case of Pd–N coordination. The bidentate *P,P*-coordination mode of ligand **2** has also been observed towards rhodium [28] and platinum [29].

Crystals of complex $3\cdot0.5\text{CH}_2\text{Cl}_2$ were obtained by slow diffusion of ether through a solution of the complex in dichloromethane. As

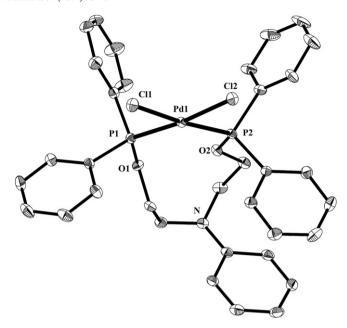


Fig. 1. Molecular structure of 3 (30% thermal probability level).

shown in the molecular structure (Fig. 1), the ligand is coordinated to the metal in a P,P-bidentate mode and the Pd-N distance is long enough (5.475 Å) ensuring the absence of interaction. The coordination geometry around palladium is approximately square planar. The two Pd-Ndistances are equal (2.3460(9) Å) and the two Nd-Ndistances are almost equal (Nd(1)-N

3.2. Room-temperature Suzuki-Miyaura coupling

Complex **3** is insoluble or displays a very low solubility in toluene, dioxane, acetonitrile, tetrahydrofuran, diethyl ether, methanol, and ethanol, but it is soluble in dimethylformamide, dimethylacetamide and dichloromethane. At relatively low palladium loading (0.1 mol%) [33], the latter three solvents were used in solvent optimization for room-temperature Suzuki–Miyaura coupling of the deactivated 4-bromoanisole with phenylboronic acid for 24 h (Table 1). In addition, different bases were tested, and the best system was found to be DMF/K₃PO₄ affording 92% conversion into 4-methoxybiphenyl (entry 6). In DMF, the conversion rate decreases in the base order K_3 PO₄ > K_2 CO₃ > Cs₂CO₃ \gg MeONa > AcONa > KOH. For the three most efficient bases, the same order is also observed in the other two solvents. For the same base, the conversion decreases in the solvent order DMF > DMA \gg dichloromethane.

Scheme 1. Synthesis of palladium complex.

Download English Version:

https://daneshyari.com/en/article/49599

Download Persian Version:

https://daneshyari.com/article/49599

Daneshyari.com