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a b s t r a c t 

We consider convex optimization problems formulated using dynamic programing equations. Such prob- 

lems can be solved using the Dual Dynamic Programing algorithm combined with the Level 1 cut selec- 

tion strategy or the Territory algorithm to select the most relevant Benders cuts. We propose a limited 

memory variant of Level 1 and show the convergence of DDP combined with the Territory algorithm, 

Level 1 or its variant for nonlinear optimization problems. In the special case of linear programs, we 

show convergence in a finite number of iterations. Numerical simulations illustrate the interest of our 

variant and show that it can be much quicker than a simplex algorithm on some large instances of port- 

folio selection and inventory problems. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Dual Dynamic Programing (DDP) is a decomposition algorithm 

to solve some convex optimization problems. The algorithm 

computes lower approximations of the cost-to-go functions ex- 

pressed as a supremum of affine functions called optimality cuts. 

Typically, at each iteration, a fixed number of cuts is added for 

each cost-to-go function. It is the deterministic counterpart of 

the Stochastic Dual Dynamic Programing (SDDP) algorithm pio- 

neered by Pereira and Pinto (1991) . SDDP is still studied and has 

been the object of several recent improvements and extensions 

( Guigues, 2014b; Guigues & Römisch, 2012a, 2012b; Kozmik & 

Morton, 2015 ; Pfeiffer, Apparigliato, & Auchapt, 2012 ; Philpott & 

de Matos, 2012; Philpott, de Matos, & Finardi, 2012; Shapiro, 2011; 

Shapiro, Tekaya, da Costa, & Soares, 2013 ). In particular, these last 

three references discuss strategies for selecting the most relevant 

optimality cuts which can be applied to DDP. In stochastic opti- 

mization, the problem of cut selection for lower approximations 

of the cost-to-go functions associated to each node of the scenario 

tree was discussed for the first time in Ruszczy ́nski (1993) where 

only the active cuts are selected. Pruning strategies of basis 

(quadratic) functions have been proposed in Gaubert, McEneaney, 

and Qu (2011) and McEneaney, Deshpande, and Gaubert (2008) for 

max-plus based approximation methods which, similarly to SDDP, 

approximate the cost-to-go functions of a nonlinear optimal con- 

trol problem by a supremum of basis functions. More precisely, 
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in Gaubert et al. (2011) , a fixed number of cuts is pruned and cut 

selection is done solving a combinatorial optimization problem. 

For SDDP, in Shapiro et al. (2013) it is suggested at some iterations 

to eliminate redundant cuts (a cut is redundant if it is never 

active in describing the lower approximate cost-to-go function). 

This procedure is called test of usefulness in Pfeiffer et al. (2012) . 

This requires solving at each stage as many linear programs as 

there are cuts. In Pfeiffer et al. (2012) and Philpott et al. (2012) , 

only the cuts that have the largest value for at least one of the 

trial points computed are considered relevant, see Section 4 for 

details. This strategy is called the Territory algorithm in Pfeiffer et 

al. (2012) and Level 1 cut selection in Philpott et al. (2012) . It was 

presented for the first time in 2007 at the ROADEF congress by 

David Game and Guillaume Le Roy (GDF-Suez), see Pfeiffer et al. 

(2012) . However, a difference between Pfeiffer et al. (2012) and 

Philpott et al. (2012) is that in Pfeiffer et al. (2012) the nonrelevant 

cuts are pruned whereas in Philpott et al. (2012) all computed cuts 

are stored and the relevant cuts are selected from this set of cuts. 

In this context the contributions of this paper are as follows. 

We propose a limited memory variant of Level 1. We study the 

convergence of DDP combined with a class of cut selection strate- 

gies that satisfy an assumption (Assumption (H2), see Section 4.2 ) 

satisfied by the Territory algorithm, the Level 1 cut selection 

strategy, and its variant. In particular, the analysis applies to (i) 

mixed cut selection strategies that use the Territory algorithm, 

Level 1, or its variant to select a first set of cuts and then apply 

the test of usefulness to these cuts and to (ii) the Level H cut 

selection strategy from Philpott et al. (2012) that keeps at each 

trial point the H cuts having the largest values. In the case when 

the problem is linear, we additionally show convergence in a finite 
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number of iterations. Numerical simulations show the interest of 

the proposed limited memory variant of Level 1 and show that 

it can be much more efficient than a simplex algorithm on some 

instances of portfolio selection and inventory problems. 

The outline of the study is as follows. Section 2 recalls from 

Guigues (2014a) a formula for the subdifferential of the value 

function of a convex optimization problem. It is useful for the im- 

plementation and convergence analysis of DDP applied to convex 

nonlinear problems. Section 3 describes the class of problems 

considered and assumptions. Section 4.1 recalls the DDP algorithm 

while Section 4.2 recalls Level 1 cut selection, the Territory al- 

gorithm and describes the limited memory variant we propose. 

Section 5 studies the convergence of DDP with cut selection 

applied to nonlinear problems while Section 6 studies the conver- 

gence for linear programs. Numerical simulations are reported in 

Section 7 . 

We use the following notation and terminology: 

- The usual scalar product in R 

n is denoted by 〈 x, y 〉 = x � y for 

x, y ∈ R 

n . 

- ri( A ) is the relative interior of set A . 

- B n is the closed unit ball in R 

n . 

- dom( f ) is the domain of function f . 

- | I | is the cardinality of the set I . 

- N 

∗ is the set of positive integers. 

2. Formula for the subdifferential of the value function of a 

convex optimization problem 

We recall from Guigues (2014a) a formula for the subdiffer- 

ential of the value function of a convex optimization problem. 

It plays a central role in the implementation and convergence 

analysis of DDP method applied to convex problems and will be 

used in the sequel. 

Let Q : X → R , be the value function given by 

Q (x ) = 

{
inf y ∈ R n f (x, y ) 

y ∈ S(x ) := { y ∈ Y : Ax + By = b, g(x, y ) ≤ 0 } . (2.1) 

Here, A and B are matrices of appropriate dimensions, and X ⊆ R 

m 

and Y ⊆ R 

n are nonempty, compact, and convex sets. Denoting 

by 

X 

ε := X + εB m 

(2.2) 

the ε-fattening of the set X , we make the following assumption 

(H): 

(1) f : R 

m ×R 

n → R ∪ { + ∞} is lower semicontinuous, proper, 

and convex. 

(2) For i = 1 , . . . , p, the i th component of function g ( x , y ) is 

a convex lower semicontinuous function g i : R 

m ×R 

n → R ∪ 

{ + ∞} . 
(3) There exists ε > 0 such that X 

ε × Y ⊂ dom( f ). 

Consider the dual problem 

sup 

(λ,μ) ∈ R q ×R 
p 
+ 

θx (λ, μ) (2.3) 

for the dual function 

θx (λ, μ) = inf 
y ∈ Y 

f (x, y ) + λ� (Ax + By − b) + μ� g(x, y ) . 

We denote by �( x ) the set of optimal solutions of the dual 

problem (2.3) and we use the notation 

Sol (x ) := { y ∈ S(x ) : f (x, y ) = Q (x ) } 
to indicate the solution set to (2.1) . 

It is well known that under Assumption ( H ), Q is convex. The 

description of the subdifferential of Q is given in the following 

lemma: 

Lemma 2.1 (Lemma 2.1 in Guigues, 2014a ) . Consider the value func- 

tion Q given by (2.1) and take x 0 ∈ X such that S ( x 0 )  = ∅ . Let As- 

sumption (H) hold and assume the Slater-type constraint qualification 

condition: 

there exists ( ̄x , ȳ ) ∈ X ×ri (Y ) such that A ̄x + B ̄y = b 

and ( ̄x , ȳ ) ∈ ri ({ g ≤ 0 } ) . 
Then s ∈ ∂Q (x 0 ) if and only if 

(s, 0) ∈ ∂ f (x 0 , y 0 ) + { [ A 

� ; B 

� ] λ : λ ∈ R 

q } 
+ 

{ ∑ 

i ∈ I(x 0 ,y 0 ) 

μi ∂g i (x 0 , y 0 ) : μi ≥ 0 

} 

+ { 0 } ×N Y (y 0 ) , (2.4) 

where y 0 is any element in the solution set Sol(x 0 ) and with 

I(x 0 , y 0 ) = { i ∈ { 1 , . . . , p} : g i (x 0 , y 0 ) = 0 } . 
In particular, if f and g are differentiable, then 

∂Q (x 0 ) = 

{
∇ x f (x 0 , y 0 ) + A 

� λ

+ 

∑ 

i ∈ I(x 0 ,y 0 ) 

μi ∇ x g i (x 0 , y 0 ) : (λ, μ) ∈ �(x 0 ) 

}
. 

Proof. See Guigues (2014a) . �

3. Problem formulation 

Consider the convex optimization problem ⎧ ⎨ 

⎩ 

inf 
x 1 , ... ,x T 

T ∑ 

t=1 

f t (x t , x t−1 ) 

x t ∈ X t , g t (x t , x t−1 ) ≤ 0 , A t x t + B t x t−1 = b t , t = 1 , . . . , T , 

(3.1) 

for x 0 given and the corresponding dynamic programing equa- 

tions 

Q t (x t−1 ) = 

{
inf 
x t 

F t (x t , x t−1 ) := f t (x t , x t−1 ) + Q t+1 (x t ) 

x t ∈ X t , g t (x t , x t−1 ) ≤ 0 , A t x t + B t x t−1 = b t , 
(3.2) 

for t = 1 , . . . , T , with Q T +1 ≡ 0 , and g t (x t , x t−1 ) = 

(g t, 1 (x t , x t−1 ) , . . . , g t,p (x t , x t−1 )) with g t,i : R 

n ×R 

n → R ∪ { + ∞} . 
Cost-to-go function Q t+1 (x t ) represents the optimal (minimal) 

total cost for time steps t + 1 , . . . , T , starting from state x t at the 

beginning of step t + 1 . 

We make the following assumptions (H1): 

(H1) Setting X 

ε 
t := X t + εB n , for t = 1 , . . . , T , 

(a) X t ⊂ R 

n is nonempty, convex, and compact. 

(b) f t is proper, convex, and lower semicontinuous. 

(c) setting g t (x t , x t−1 ) = (g t, 1 (x t , x t−1 ) , . . . , g t,p (x t , x t−1 )) , for i = 

1 , . . . , p, the i th component function g t,i (x t , x t−1 ) is a convex 

lower semicontinuous function. 

(d) There exists ε > 0 such that X 

ε 
t ×X t−1 ⊂ dom ( f t ) and for ev- 

ery x t−1 ∈ X 

ε 
t−1 

, there exists x t ∈ X t such that g t (x t , x t−1 ) ≤ 0 

and A t x t + B t x t−1 = b t . 

(e) If t ≥ 2, there exists 

x̄ t = ( ̄x t,t , ̄x t ,t −1 ) ∈ ri (X t ) ×X t−1 ∩ ri ({ g t ≤ 0 } ) 
such that x̄ t,t ∈ X t , g t ( ̄x t,t , ̄x t ,t −1 ) ≤ 0 and A t ̄x t,t + B t ̄x t ,t −1 = 

b t . 

Comments on the assumptions. Assumptions (H1)-(a)–(H1)-(c) 

ensure that the cost-to-go functions Q t , t = 2 , . . . , T are convex. 

Assumption (H1)-(d) guarantees that Q t is finite on X 

ε 
t−1 

and 

has bounded subgradients on X t−1 . It also ensures that the cut 

coefficients are finite and therefore that the lower piecewise affine 

approximations computed for Q t by the DDP algorithm are convex 
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