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a b s t r a c t 

We are given an undirected network G [ V , E ] and a set of traffic demands. To install a potential edge e ∈ E 
we incur a cost F e to provide a positive capacity a e . The objective is to select edges, at minimum cost, so 

as to permit a feasible multicommodity flow of all traffic. We study structure of the projection polytope 

of this problem, in the space of binary variables associated with fixed-charges, by relating facets of a p 

node problem (p = 2 , 3 , or 4), defined over a multi-graph obtained by a p -partition of V , to the facets 

of the original problem. Inspired from the well-known “cover” inequalities of the Knapsack Problem, we 

develop the notion of p -partition cover inequalities. We present necessary and sufficient conditions for 

such inequalities to be facet defining for p = 3 and 4. A simple heuristic approach for separating and 

adding such violated inequalities is presented, and implemented for p values up to 10. We report optimal 

solutions for problems with 30 nodes, 60 edges, and fully dense demand matrices within a few minutes 

of cpu time for most instances. Some results for dense graph problems are also reported. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

A general problem that arises in network design is to install ca- 

pacities on a subset of edges, from a given set of available edges, 

and to route the demands for different commodities (source–

destination pairs) over these installed edges subject to edge capaci- 

ties and other design constraints, with the objective of minimizing 

total capacity installation and routing costs. The model has wide 

applications in telecommunication and transportation planning. 

Research on the Network Design Problem can be broadly di- 

vided into two categories, depending upon how these capacities 

are installed: The (Facilities) Network Design Problem (FND) and 

the Fixed Charge Network Design Problem (FCND). 

The FND involves one or more facility types, with different unit 

capacities, and we are allowed to install on an edge, any (inte- 

ger) number of each of these facility types. Thus the decision vari- 

ables associated with installing capacities are not binary but gen- 

eral integer variables. This model was first introduced in Magnanti, 

Mirchandani, and Vachani (1993) where the problem was defined 

over an undirected network G [ V , E ] with n = | V | nodes and m = | E| 
edges, with only one facility type. The model incorporates only ca- 

pacity installation costs, and no routing costs, with the following 
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mixed-integer programming formulation: 

min 

∑ 

{ i, j}∈ E 
F i j x i j (1) 

∑ 

j : { i, j }∈ E 
y k i j −

∑ 

j : { i, j }∈ E 
y k ji = 

{ 

d k , if i = O (k ) 

−d k , if i = D (k ) 
0 , otherwise, 

(2) 

∑ 

k ∈ K 
(y k i j + y k ji ) ≤ x i j , ∀{ i, j} ∈ E (3) 

y k i j , y 
k 
ji ≥ 0 , ∀{ i, j} ∈ E, ∀ k ∈ K 

x i j ≥ 0 , integer, ∀{ i, j} ∈ E 

In this formulation, E is the set of (undirected) edges, and com- 

modity k has origin O ( k ), and destination D ( k ). Assume, without 

loss of generality, that each unit of the facility has a capacity 

of 1. The continuous variable y k 
i j 

models the flow of commodity 

k on edge { i , j } in the direction i to j , and the variable x ij mod- 

els the integer number of units of the facility installed on edge 

{ i , j }. Constraint in (2) are the flow-conservation equations. The 

edge-capacity constraints in (3) limit the total amount of flow of 

all commodities on each edge in both direction. 

Several polyhedral results on this problem ( Agarwal, 2006; 

Avella, Mattia, & Sassono, 2007; Bienstock, Chopra, Gunluk, & Tsai, 

1998 ) focus on the capacity formulation that is obtained by pro- 

jecting out all flow-variables. Article ( Agarwal, 2006 ) introduces 
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the notion of a p -partition of a network, which results in a p - 

node problem, and shows that under a mild condition, the facets of 

the p -node problem correspond to the facets of the original prob- 

lem. This model has clear applications in telecommunication net- 

works where routing costs are negligible compared to capacity in- 

stallation costs. Most of the studies of this model use undirected 

networks. 

In the FCND, to send flow through an arc we have to install a 

fixed capacity for a fixed cost on that arc. So the decision variables 

for capacity installation are binary variables. This general model 

was studied in Magnanti and Wong (1984) illustrating many ap- 

plications in the fields of logistics and transportation. Given a di- 

rected network G [ V , A ], where V is the set of nodes, and A is the 

set of arcs, and a set of commodities, with origin–destination pairs 

{( O ( k ), D ( k ), k ∈ K } with demands { d k , k ∈ K } to be routed from ori- 

gins to their respective destinations, the objective is to minimize 

the sum total of routing costs and capacity installation costs. The 

model was formulated as the following mixed integer program: 

min 

∑ 

k ∈ K 

∑ 

(i, j) ∈ A 
f k i j y 

k 
i j + 

∑ 

(i, j) ∈ A 
F i j x i j (4) 

∑ 

j :(i, j ) ∈ A 
y k i j −

∑ 

j:( j,i ) ∈ A 
y k ji = 

{ 

d k , if i = O (k ) 

−d k , if i = D (k ) 
0 , otherwise, 

(5) 

∑ 

k ∈ K 
y k i j ≤ a i j x i j , ∀ (i, j) ∈ A (6) 

y k i j ≥ 0 , ∀ (i, j) ∈ A, ∀ k ∈ K (7) 

x i j ∈ { 0 , 1 } , ∀ (i, j) ∈ A (8) 

Constraints in (6) ensure that any arc ( i , j ) is permitted to route 

the flow, up to a maximum of a ij , only if x i j = 1 , resulting in a fixed 

cost of F ij . The per-unit cost of shipping one unit of commodity k 

on arc ( i , j ) is represented by f k 
i j 
. 

Most of the papers on the FCND deal with a directed net- 

work and incorporate both variable (flow) costs as well the fixed 

costs in the objective function. Since LP-relaxation generally pro- 

vides a weak lower bound ( Crainic, Frangioni, & Gendron, 1999 ), 

Lagrangian relaxation procedures ( Crainic et al., 1999; 2001 ) have 

been used to improve the lower bound. In Chouman, Crainic, and 

Gendron (2011) , authors present a cutting-plane algorithm using 

several classes of valid inequalities. 

To the best of our knowledge, there are no polyhedral results in 

the literature on the FCND. 

In this paper, we consider the problem over an undirected net- 

work (UFCNDP-F) with only fixed costs, as considered in Magnanti 

et al. (1993) with the following MIP formulation: 

min 

∑ 

{ i, j}∈ E 
F i j x i j (UFCNDP-F) 

∑ 

j : { i, j }∈ E 
y k i j −

∑ 

j : { i, j }∈ E 
y k ji = 

{ 

d k , if i = O (k ) 

−d k , if i = D (k ) 
0 , otherwise, 

(9) 

∑ 

k ∈ K 
(y k i j + y k ji ) ≤ a i j x i j , ∀{ i, j} ∈ E (10) 

y k i j , y 
k 
ji ≥ 0 , ∀{ i, j} ∈ E, ∀ k ∈ K (11) 

x i j ∈ { 0 , 1 } , ∀{ i, j} ∈ E (12) 

This model differs from the one in Magnanti et al. (1993) since 

the capacity installation variables in (12) are binary, and con- 

straint set (10) ensures that the capacity of an edge { i , j } is 

either a ij or 0, depending upon whether capacity is installed (with 

cost F ij ) or not. We will assume, without loss of generality, that 

a e > 0 for all edges e ∈ E . This model has been studied in Zaleta 

and Socarras (2004) , Lewis (2009) , Herrmann, Ioannou, and Proth 

(1996) and Balakrishnan, Magnanti, and Wong (1989) . All these pa- 

pers attempt to find good solutions to this problem. While au- 

thors in Zaleta and Socarras (2004) use Tabu Search metaheuris- 

tic to find good quality solutions, article ( Lewis, 2009 ) presents 

a preprocessing technique for identifying critical edges, using de- 

sign of experiment (DOE) principles. Authors in Herrmann et al. 

(1996) present a dual-ascent procedure for finding “near optimal”

solutions to the problem by extending the dual-ascent approach 

proposed by Balakrishnan et al. (1989) for the uncapacitated ver- 

sion of the problem. Gendron in Gendron (2002) showed that the 

approach proposed in Herrmann et al. (1996) was incorrect, and 

suggested a simple modification to fix the error. It was also ar- 

gued in Gendron (2002) that corrected dual-ascent approach was 

not very effective for the problem. 

The outline of the article is as follows. In Section 2 we present 

the projection polytope obtained by projecting out the flow vari- 

ables. In Section 3 we consider a p -node multi-graph by consid- 

ering a p -partition of the node set V and shrinking nodes in each 

subset of the partition into a single node. We then present a the- 

orem which relates facet defining inequalities of this projection 

polytope to facet defining inequalities of corresponding polytope 

of the “aggregate” problem defined over this p -node multi-graph. 

In Section 4 , we study the 3-node multigraph and develop neces- 

sary and sufficient conditions for “cover inequalities”, that we in- 

troduce, to be facet-defining for convex hull of feasible solutions of 

this 3-node problem. Section 5 extends the study to a 4-node prob- 

lem. Section 6 explains how the idea for cover inequalities can be 

extended to larger values of p , and Section 7 described p -partition 

based spanning tree inequalities. Section 8 discusses the flow ver- 

sus the capacity formulation of the problem, and demonstrates the 

computational superiority of the latter with a new implementa- 

tion. In Section 9 we describe the implementation details, and the 

separation heuristics used to obtain the violated cover inequalities. 

Finally in Section 10 , we present our computational experiments 

which demonstrate the effectiveness of our approach. Some con- 

cluding remarks are made in Section 11 . 

2. The projection polytope 

According to a well-known theorem on multi-commodity flows 

in Iri (1971) and in Onaga and Kakusho (1971) , the flow conserva- 

tion constraints in formulation UFCNDP-F can be replaced by con- 

straints of the form μ(a − d) ≥ 0 , where a and d are vectors of 

capacities and demands, respectively, defined on the node-pairs of 

G [ N , E ], and μ is a metric. A non-negative symmetric function μ
defined on all pairs of nodes of G , is said to be a metric if for any 

three distinct nodes x , y , z ∈ N , μ({ x, y } ) ≤ μ({ x, z} ) + μ({ z, y } ) . 
For { i , j } �∈ E , we set a i j = 0 , and for commodities { i , j } �∈ K , we set 

d i j = 0 . The theorem, popularly referred to as the Japanese Theorem, 

asserts that for any multi-commodity flow problem, a capacity vec- 

tor a is feasible for a demand vector d if and only if μ(a − d) ≥ 0 

for every metric μ. 

The set of all metrics is infinitely large and forms a polyhedral 

convex cone. Any extreme ray of this cone is called a primitive 

metric. Since any metric can be expressed as a convex combina- 

tion of primitive metrics, for feasibility of a multi-commodity flow 

it is enough that the condition μ(a − d) ≥ 0 holds only for the set 

M of all primitive metrics. This provides an IP formulation for the 

(UFCND) that involves only the binary capacity variables: 

min 

∑ 

e ∈ E 
F e x e (UFCND) 
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