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a b s t r a c t 

We present a methodology for fitting a time-varying paired comparisons model using an empirical Bayes 

approach. The model simultaneously avoids two problems that typically arise with paired comparisons 

data: first, that extreme values of estimated strengths can occur for competitors appearing in and win- 

ning a small number of games, producing absurd rankings, and second, that the time-varying strengths 

‘balloon’ over time. The empirical Bayes approach automatically shrinks the strength estimates towards 

the mean, thus avoiding both issues. We present our model and demonstrate its use in the setting of 

tennis in search of an answer to the question: who is the greatest women’s player of all time. Our results 

suggest that Steffi Graf is a strong candidate, but, using confidence intervals on the rankings themselves, 

others cannot be ruled out. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Baker and McHale (2014) presented a methodology to estimate 

time-varying ratings for paired comparisons and used the model 

to answer the question: “who is the greatest men’s tennis player 

in the Open Era?”. Here we address the ‘sister’ question: “who is 

the greatest women’s tennis player in the Open Era?”. Although 

answering this question would be of great interest to sports fans, 

the main intellectual novelty in the current paper lies in the im- 

provement of the underlying model used to estimate time varying 

strengths. 

One might think that the task of ranking women tennis play- 

ers would be very similar to that of ranking men players. How- 

ever, the characteristics of women’s tennis, and the resulting dif- 

ferences in the data set of results, mean that a more robust model 

is needed. Specifically, in women’s tennis, matches are best out of 

three sets instead of best out of five, reducing the amount of data 

considerably. With less data, estimating time-varying strengths be- 

comes more challenging, and hence one cannot simply take soft- 

ware written for studying men’s tennis, and use it for studying 

women’s tennis. 

The improvement in the modelling approach is needed to deal 

with several issues arising from the characteristics of the women’s 

game, and these issues are not unique to fitting ratings models 

to sports data. The first problem arises as a result of competi- 
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tors playing different numbers of matches. This means that there 

is more uncertainty in the estimate of strength for a competitor 

playing in relatively few matches, compared to a competitor play- 

ing in many matches. As a result, we may have the perverse sit- 

uation where a player with just a few victories is rated as be- 

ing better (but with a larger standard error) than a player with a 

marginally lower win rate, which was however achieved over many 

more matches. The second related issue is caused by players win- 

ning (or, more likely, losing) all of their matches so that the esti- 

mate of strength tends towards infinity (or zero). Indeed, Hunter 

(2004) decided to drop any player from the data set winning or 

losing all of their competitions from the estimation. This is clearly 

an unsatisfactory strategy. These two issues are general problems 

for paired comparisons models and have long been a thorn in the 

side of analysts fitting ratings models. A third issue, specific to fit- 

ting time varying comparisons models, is that of ‘ballooning’; be- 

cause the strengths of competitors are relative, fitted strengths can 

move up and down arbitrarily over time, and this must somehow 

be prevented. If left unaddressed, these issues can result in the an- 

alyst obtaining a rankings table with unlikely, unexpected and pos- 

sibly spurious ratings. 

Our solution to these problems is to assume that all player 

strengths come from some ‘prior’ distribution of competitor 

strengths. Taking this approach deals with all these problems. Fur- 

ther, the intuition behind the approach makes sense in the setting 

of sport: assuming that competitors are drawn from a population 

in which ability itself is a random variable having some distribu- 

tion among players is realistic: some players will have a higher 
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strength than the mean, whilst others will be weaker than the 

mean strength; but most will have near average strength. As we 

observe the players competing and winning and losing matches, 

we will be able to ‘update’ the estimate of their strength as we get 

a better understanding of what their underlying ability is. 

This approach is a type of ‘shrinkage’ ( Maritz & Lwin, 1989 ) in 

that we take an estimate of a player’s strength (the prior) and up- 

date it in the light of information (match results). In comparison 

to the estimate of strength that would be obtained without us- 

ing a prior, the empirical Bayes estimate is ‘shrunken’ towards the 

mean of the prior distribution. Of course, the amount of shrinkage 

decreases as more evidence is gathered that the player is different 

from the average. 

Assuming a prior distribution for parameters is nothing new 

and is the essence of Bayesian statistics itself. We should point 

out however that our approach is frequentist since in the empirical 

Bayes method, part of a hierarchical prior distribution is estimated 

from the data. Indeed, empirical Bayes is an accepted part of the 

frequentist toolset. Baker and McHale (2015) present an empirical 

Bayes’ methodology for use in the case of a static paired compar- 

isons model. However, the situation here is made much more com- 

plicated than would normally be the case because we are looking 

to estimate time-varying strengths for each competitor. As such, 

there is no single strength for each competitor, rather there is a 

‘line’ of strengths. 

Unlike here, much of the previous work on the analysis of 

sporting results has used stochastic models of strengths in order 

to rank the competitors. Glickman (1993) presented a dynamic 

Bradley–Terry model for chess and Glickman (2001) presented a 

state-space model which allowed for the mean and the variance of 

the evolution process to be stochastic and demonstrated the model 

by rating National Football League teams and chess players. Knorr- 

Held (20 0 0) used the Kalman filter to estimate dynamic ratings for 

sports teams. These types of stochastic models are representative 

of what happens in team sports, where individual players come 

and go and the resulting change in performance could be mod- 

elled as a random process. However, for sports like tennis, indi- 

viduals compete, and there is a strong deterministic component to 

the evolution of their strength, which typically peaks and then falls 

off slowly towards retirement. Although models which allow for a 

stochastic evolution of strengths can of course be used to model 

individual sports, the use of a ratings model that allows for a de- 

terministic evolution of player strengths seems more natural, and 

is the methodology we adopt here. 

The paper is organised as follows. In the next section, we de- 

scribe the basic time-varying paired comparisons model, the em- 

pirical Bayes modifications to the basic model, and the procedure 

for estimating the parameters of the model, including the idea of 

connectivity. Section 3 presents a simple idea of calculating confi- 

dence intervals on rankings. Our data set for the women’s Grand 

Slam tennis is described in Section 4 , before the results of our 

model, and model diagnostics are presented in Section 5 . Some 

conclusions are given in Section 6 . 

2. Time-varying model 

As in Baker and McHale (2014) , the basic building block of our 

model is the continuum of paired comparisons models, first pre- 

sented in Stern (1990) , but first expressed in terms of the distribu- 

tion function of the beta distribution by Baker and McHale (2014) . 

The probability that player i beats player j is given by 

p i j = B (β, β) −1 

∫ αi / (αi + α j ) 

0 

y β−1 (1 − y ) β−1 d y, (1) 

where player i ’s strength is αi , β is a parameter to be estimated 

and B denotes the beta function. For β = 1 , the model reduces to 

the familiar Bradley–Terry model, whilst as β → ∞ the Thurstone–

Mosteller model is obtained. The over-lying unit of victory in ten- 

nis is the match. However, there are smaller units of competition: 

a point, a game and a set. As Baker and McHale (2014) did for 

men’s tennis, we use the unit of victory as the set. This means in- 

formation is retained in the data regarding the margin of victory 

(2–0 in sets suggests a stronger performance than 2–1). However, 

we do not use the game as the unit of victory because this can 

result in counter-intuitive results. For example, a player may win 

a match 7–6, 1–6, 7–6. If the game were used as the unit of vic- 

tory, then the winner would be deemed to have a lower estimated 

strength of the two competing players given that the loser, in fact, 

won more games than the winner. Using the set score (2–1) does 

not have this weakness. 

The time-varying strength is modelled using the barycentric 

rational interpolant ( Baker & Jackson, 2014; Berrut & Trefethen, 

2004 ), so that the strength of player i at time t is given by 

αi (t) = 

∑ n i 
k =1 

w ik λik / (t − t ik ) ∑ n i 
k =1 

w ik / (t − t ik ) 
(2) 

where λik is the k th fitted strength of player i , i.e. the strength at 

time t ik . To differentiate between αi ( t ) and λik , we call the latter 

the tabulated strength . Of course, at time t ik , the two are the same. 

There are n i such nodes for player i , and we use weights of order 

zero such that w ik = (−1) k . 

One might wonder whether strengths could be forecast using 

(2) . There is a small amount of work on forecasting using splines 

(e.g. Harvey & Koopman, 1993 ), so it is possible that an analogous 

method could be developed using the barycentric method. How- 

ever, our focus here is on the use of the method for interpolating 

and smoothing noisy data. 

2.1. Node allocation 

Our first improvement on the Baker and McHale 

(2014) methodology comes in the allocation of nodes to each 

player. A large number of nodes results in over-parameterisation, 

whilst if there are too few nodes, the model cannot respond to 

the changing strengths of players appropriately. 

Rather than use the complicated and somewhat ad-hoc for- 

mula in Baker and McHale (2014) , we propose a simpler algorithm, 

which in our tests provides better results: specify N , the required 

total number of nodes in the model (the total for all players in the 

model). Then if s sets were played in total, there should be a node 

for every s / N sets played. Of course, s / N must be at least unity, 

which means that the actual number of nodes allocated will ex- 

ceed N . This system means that many players who played rarely 

only have one node and are assumed to have a constant strength, 

whereas players who played a lot have more nodes. For players 

with more than one node, nodes were regularly spaced in time to 

include the first and last match dates for that player. We discuss 

how we found the optimum value of N , the total number of nodes, 

in Section 2.3 below. 

2.2. Empirical Bayes model extension: shrinkage 

The second and major contribution to the literature here is to 

adopt an empirical Bayes methodology whereby we assume player 

strengths are random variables drawn from some underlying distri- 

bution. After experimentation with different prior distributions, it 

was decided that the prior mean strength of each player should be 

a random variable from the log-normal distribution, but of course, 

the methodology presented here can be used with other prior dis- 

tributions, as discussed at the end of this section. We now set up 

the mathematical terminology of our empirical Bayes methodology 

in terms of tennis. 
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