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a b s t r a c t 

We present the most general model of the type considered by Black and Litterman (1991) after fully 

clarifying the duality between Black–Litterman optimization and Bayesian regression. Our generalization 

is itself a special case of a Bayesian network or graphical model. As an example, we work out in full detail 

the treatment of views on factor risk premia in the context of APT. We also consider a more speculative 

example in which the portfolio manager specifies a view on realized volatility by trading a variance swap. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The topic of portfolio optimization in the style of Black and Lit- 

terman (1992, 1991) seems to have generated more than its share 

of confusion over the years, as evidenced by articles with titles 

such as “A demystification of the Black–Litterman model” ( Satchell 

& Scowcroft, 20 0 0 ), etc. The method itself is often described as 

“Bayesian” but the original authors do not elaborate directly on 

connections with Bayesian statistics. 

In language universally familiar to statisticians ( Robert, 2007 ), a 

Bayesian statistical model consists of: 

1. A vector-valued random variable x ∈ X ⊆ R 

d distributed accord- 

ing to f ( x | θ), where realizations of x have been observed and 

only the parameter θ (which belongs to a real vector space 

� ⊆ R 

� ) is unknown, and 

2. A prior density π ( θ) on �. 

The function f ( x | θ) is called the likelihood and, after condition- 

ing on θ, forms a density on the data space X ⊆ R 

d . The posterior 

is the density on � proportional to f ( x | θ) π ( θ), and the normaliza- 

tion factor drops out of certain calculations. In Bayesian statistics, 

all statistical inference is based on the posterior. 

The paper by Litterman and He (1999) contains many references 

to a “prior” but only one mention of a “posterior” without details, 

and no mention of a “likelihood.”

In the present note, we clarify the exact nature of the Bayesian 

statistical model to which Black–Litterman optimization corre- 
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sponds, in terms of the prior, likelihood, and posterior. In the pro- 

cess we also lay out the full set of assumptions made, some of 

which are glossed over in other treatments. 

2. Black, Litterman, and Bayes 

Consider a view such as “the German equity market will out- 

perform a capitalization-weighted basket of the rest of the Euro- 

pean equity markets by 5%,” which is an example presented in 

Litterman and He (1999) . Let p ∈ R 

n denote a portfolio which is 

long one unit of the DAX index, and short a one-unit basket which 

holds each of the other major European indices (UKX, CAC40, AEX, 

etc.) in proportion to their respective aggregate market capitaliza- 

tions, so that 
∑ 

i p i = 0 . Let q = 0 . 05 in this example. This view 

may be equivalently expressed as 

E [ p 

′ r ] = q ∈ R (1) 

where r is the random vector of asset returns over some subse- 

quent interval, and q denotes the expected return, according to the 

view. If there are multiple such views, say 

E [ p 

′ 
i r ] = q i , i = 1 . . . k 

then the portfolios p i are more conveniently arranged as rows of a 

matrix P , and the statement of views becomes 

E [ P r ] = q for q ∈ R 

k . (2) 

In the language of statistics, the core idea of Black and Lit- 

terman (1991) is to treat the portfolio manager’s views as noisy 

observations which are useful for performing statistical inference 

concerning the parameters in some underlying model for r . For ex- 

ample, if 

r ∼ N( θ, �) (3) 

http://dx.doi.org/10.1016/j.ejor.2016.10.027 

0377-2217/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.ejor.2016.10.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.10.027&domain=pdf
mailto:ritter@post.harvard.edu
mailto:gordon.ritter@gsacapital.com
http://dx.doi.org/10.1016/j.ejor.2016.10.027


P. Kolm, G. Ritter / European Journal of Operational Research 258 (2017) 564–572 565 

with � a known positive-definite n × n matrix, then the views 

(2) can be recast as “observations” relevant for inference on the 

parameter θ. 

A key aspect of the model is that the practitioner must also 

specify a level of uncertainty or “error bar” for each view, which is 

assumed to be an independent source of noise from the volatility 

already accounted for in a model such as (3) . This is expressed as 

the following more precise restatement of (2) : 

P θ = q + ε(v ) , ε(v ) ∼ N(0 , �) , � = diag (ω 1 , . . . , ω k ) (4) 

Portfolio managers in this model specify noisy, partial, indirect 

information about θ, through their views. The information is par- 

tial and indirect because the views are on portfolio returns, i.e. lin- 

ear transformations of returns, rather than on the asset returns di- 

rectly. The information is noisy , with the noise modeled by ε(v ) , 

because the future is always uncertain. 

A subjective, uncertain view about what will happen to a cer- 

tain portfolio in the future is conceptually distinct from a noisy ex- 

perimental observation such as an attempt to measure some physi- 

cal constant with imperfect laboratory equipment. Nonetheless, for 

building intuition, we suggest thinking of a portfolio manager’s 

forecast as an “observation of the future” in which the measur- 

ing device is a rather murky and unreliable crystal ball. Only in 

this way is it analogous to the noisy measurements in experimen- 

tal design which much of statistics is designed to model. 

Quite generally, if any random variable r comes from a den- 

sity p ( r | θ ) with parameter θ , and if one were given a set of noisy 

observations of realizations of r , then one could infer something 

about θ by statistical inference. This would be the predicament of 

a physicist with a noisy measuring device, measuring a quantity 

that is itself random, and we suppose the physicist wants to know 

about the underlying data-generating process. Black and Litterman 

essentially say that the portfolio manager’s view, if it is worth any- 

thing, should contain some (noisy) information about the future, so 

the view is, mathematically, no different from a noisy observation 

of a realization of (a linear transformation of) future returns. 

As noted above, to perform statistical inference, observations 

alone are not sufficient; one needs to fully specify the statistical 

model, which includes a likelihood and a prior. In fact (4) specifies 

the likelihood as 

f ( q | θ) ∝ exp 

[ 
−1 

2 

( P θ − q ) ′ �−1 
( P θ − q ) 

] 
(5) 

which is the standard normal likelihood for a multiple linear re- 

gression problem with dependent variable q and design matrix P . 

A feature of Bayesian statistics that is dissimilar from frequen- 

tist statistics is the ability to perform inference in data-scarce situ- 

ations. In Bayesian statistics, even a single observation can lead to 

valid inferences for multi-parameter models due to the presence of 

a prior. In essence, when less information is available, more weight 

is given to the prior. 

The classic regression problem has the number of variables 

much less than the number of observations, and is therefore iden- 

tifiable. However, the need to perform inference in models with 

many more variables than observations also arises in many appli- 

cations. Notably, this arises in the analysis of gene expression ar- 

rays, and is typically handled by Bayesian methods such as ridge 

and the lasso ( Tibshirani, 1996 ). 

In a Black–Litterman model with one single view, there is one 

observation and still n parameters to serve as the subjects for sta- 

tistical inference: θ ∈ R 

n are the unobservable means of the asset 

returns. More generally, we may be presented with no views, one, 

or very many. When views are collected from many diverse port- 

folio managers or economists, they may contain internal contra- 

dictions; i.e. it may be impossible that they all come true exactly. 

Bayesian regression is the ideal tool to deal with all such cases. 

Internal contradictions in the views simply mean that there is no 

exact (zero-residual) solution to the regression equations, which in 

fact is the typical situation in classic (identifiable) linear regression. 

We have not yet specified the prior, but Black and Litterman 

were motivated by the guiding principle that, in the absence of 

any sort of information/views which could constitute alpha over 

the benchmark, the optimization procedure should simply return 

the global CAPM equilibrium portfolio, with holdings denoted h eq . 

Hence in the absence of any views, and with prior mean equal to 

�, the investor’s model of the world is that 

r ∼ N( θ, �) , and θ ∼ N( �, C ) (6) 

for some covariance C whose inverse represents the amount of pre- 

cision in the prior. For any portfolio p , then, according to (6) we 

have 

E [ p 

′ r ] = p 

′ � V [ p 

′ r ] = p 

′ ( � + C ) p . 

In fact we must make a choice whether to use the conditional 

or unconditional variance in optimization: V ( r | θ) = � but V ( r ) = 

� + C . Since investors are presumably concerned with uncon- 

ditional variance of wealth, the unconditional variance form is 

preferable. 

Throughout the following, we use the letter h ∈ R 

n to denote 

a vector of portfolio holdings; it has units of dollars, or whatever 

numéraire currency the investor is using. Mean–variance optimiza- 

tion with the moments as given above, and with risk-aversion pa- 

rameter δ > 0, leads to 

h eq = δ−1 ( � + C ) −1 �. 

Any combination of �, C satisfying this will lead to a model with 

the desired property – that the optimal portfolio with only the in- 

formation given in the prior is the prescribed portfolio h eq . In par- 

ticular, taking C = τ� with some arbitrary scalar τ > 0, as did the 

original authors, leads to 

� = δ(1 + τ ) �h eq 

We thus have the normal likelihood (5) and the normal prior 

(6) which is a conjugate prior for that likelihood, meaning that the 

posterior is of the same family (i.e. also normal in this example). 

A detailed discussion of conjugate priors is found in Robert (2007 , 

Section 3.3). 

The negative log posterior is thus proportional to (neglecting 

terms that do not contain θ): 

( P θ − q ) ′ �−1 
( P θ − q ) + ( θ − �) ′ C −1 ( θ − �) (7) 

= θ
′ 
P ′ �−1 

P θ − θ
′ 
P ′ �−1 

q − q 

′ �−1 
P θ (8) 

+ θ
′ 
C −1 θ − θ

′ 
C −1 � − �′ 

C −1 θ

= θ
′ 
[ P ′ �−1 

P + C −1 ] θ − 2( q 

′ �−1 
P + �′ 

C −1 ) θ (9) 

The following lemma, known colloquially as “completing the 

squares” will be useful: 

Lemma 1. If a multivariate normal random variable θ has density 

p ( θ) and 

−2 log p( θ) = θ
′ 
H θ − 2 η′ θ + ( terms without θ) 

then V [ θ] = H 

−1 and E θ = H 

−1 η. 

Lemma 1 follows directly from the fact that, for H symmetric, 

θ
′ 
H θ − 2 v ′ H θ = ( θ − v ) ′ H ( θ − v ) − v ′ H v 

For the quadratic term to match (9) we must have H = P ′ �−1 
P + 

C −1 and hence the posterior has mean 

v = [ P ′ �−1 
P + C −1 ] −1 [ P ′ �−1 

q + C −1 �] (10) 
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