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a b s t r a c t 

A financial market is a complex, dynamic system with an underlying governing manifold. This study in- 

troduces an early warning method for financial markets based on manifold learning. First, we restructure 

the phase space of a financial system using financial time series data. Then, we propose an information 

metric-based manifold learning (IMML) algorithm to extract the intrinsic manifold of a dynamic financial 

system. Early warning ranges for critical transitions of financial markets can be detected from the under- 

lying manifold. We deduce the intrinsic geometric properties of the manifold to detect impending crises. 

Experimental results show that our IMML algorithm accurately describes the attractor manifold of the 

financial dynamic system, and contributes to inform investors about the state of financial markets. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

Scholars and practitioners have developed increasingly elab- 

orate techniques intended to forecast the approach of financial 

crises. As a complex, dynamic system, financial markets can exhibit 

tipping points at which abrupt transitions to a contrasting dynamic 

regime may occur ( Scheffer et al., 2009 ). This shift is called a criti- 

cal transition in financial markets, and it is exemplified by systemic 

market crashes or global crises ( Ang & Timmermann, 2012 ). It is 

difficult to predict reliably when critical thresholds approach be- 

cause markets might show little change before reaching the critical 

point ( Scheffer et al., 2009 ). In addition, shifts in financial markets 

are usually triggered by stochastic and unpredictable externalities 

( Sugihara et al., 2012; Battiston et al., 2016 ). However, investors 

need adequate warning that an impending crisis is highly proba- 

ble and reduce potential losses. 

The intrinsic complexity and nonlinearity of financial markets 

make it hard to construct an integral mathematical model to char- 

acterize the financial system, and thus the corresponding early 

warning model is unable to be constructed ( Christofides, Eicher, & 

Papageorgiou, 2016; Kou et al., 2014 ). However, financial time se- 

ries are comprehensive reflections of market operations and pro- 

vide a database for market analysis ( Ausín, Galeano, & Ghosh, 

2014 ). In practice, observations about the state of dynamic sys- 
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tems are often one-dimensional time series data. Through Phase 

Space Reconstruction (PSR), time series data can be reconstructed 

in a space in which the topology is equivalent to the original 

dynamic system ( Richard, Michael, Andrew, & Ye, 2004 ). PSR de- 

scribes the trajectory of the dynamic system in the reconstructed 

high-dimensional space ( He, Liu, Long, & Wang, 2012 ). Takens’ em- 

bedding theorem shows that the N-dimensional dynamic system 

has a low-dimensional structure because the system state is con- 

fined to an attractor ( M) of dimension d(d < N) in the state space 

( Han & Christopher, 2011 ). 

An underlying manifold governs dynamic systems and reveals 

their dynamic nature ( Sugihara et al., 2012 ). Therefore, extract- 

ing the intrinsic manifold structure is a primary objective of mar- 

ket research. Manifold learning is a hot topic in the fields of data 

mining and machine learning, which seek to find the intrinsic 

low-dimensional embedding structures within high-dimensional 

data. Our study proposes a manifold learning approach to extract 

the structure of the manifold underlying high-dimensional phase 

spaces, explore early warning ranges for critical transitions in mar- 

kets, and discover further intrinsic structural properties. 

Numerous manifold learning methods have been developed, in- 

cluding Isometric Feature Mapping (ISOMAP) ( Tenenbaum, Sivlar, 

& Langford, 20 0 0 ), Locally Linear Embedding (LLE) ( Roweis & Saul, 

20 0 0 ), and Local Tangent Space Alignment (LTSA) ( Zhang & Zha, 

2004 ). These methods have successfully discovered the embed- 

ded low-dimensional manifold. However, classical manifold learn- 

ing algorithms are concerned with space geometric characteristics. 

In financial analysis, data information characteristics—i.e., prob- 

ability distributions—are important ( Huang & Kou, 2014 ). When 
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probability density functions (PDFs) are restricted to form an in- 

trinsic manifold of high-dimensional data, geodesic distance no 

longer accurately describes the manifold distance ( Carter, Raich, 

Finn, & Hero, 2011 ). 

We selected stock market composite indices as observed in fi- 

nancial time series data. Each data point represents a financial sys- 

tem state, and the distance between them indicates the degree 

of difference between system states. If the difference is character- 

ized only by the geometric space between data points, the result 

may not fit the practical significance of the financial analysis but 

rather cause errors in subsequent analyses. Therefore, this study 

proposes an IMML algorithm to discover the structure embedded 

in the high-dimensional phase space, which is reconstructed by the 

observed financial time series range. 

Our study is conducted in three steps. First, we reconstruct an 

observed financial time series as a high-dimensional phase space. 

Second, we propose the IMML algorithm and employ it to ex- 

tract the manifold embedded in the high-dimensional phase space. 

Third, we use the underlying manifold to detect early warning 

ranges for critical transitions in markets. In addition to the crisis 

diagnosis, we implement market prognosis from the perspective of 

the inherent geometric properties in the manifold. 

This study is organized as follows. Section 2 reviews related 

theory and methods. Section 3 describes our manifold learning 

method. Section 4 reports the experimental study. Section 5 con- 

cludes the paper. 

2. Preliminaries 

2.1. Phase Space Reconstruction 

The theoretical basis of PSR originates in Takens’ embedding 

theorem ( Takens, 1981 , chap. 21). The theorem shows that com- 

plete information about the hidden state of dynamic systems can 

be preserved in observed time series data. The phase space is a 

time-delay reconstruction using time-delayed versions of a time 

series as coordinates for the space. Specifically, given a time se- 

ries x = x n , n = 1 , . . . , N, a reconstructed phase space matrix X of 

dimension m and time lag τ is defined by its row vectors: 

x = [ x n −(m −1) τ , . . . , x n −τ , x n ] , (1) 

where n = (1 + (m − 1) τ ) · · · N and a row vector x n is a point in 

the reconstructed phase space. 

A proper time lag can reduce the required RPS dimension. A 

common heuristic for selecting time lag is to use the first mini- 

mum of the automutual information function ( Richard et al., 2004 ). 

The automutual information function is defined as 

I n ( X 0 , X 1 , . . . , X n ) = 

∑ 

j 

(H( x j ) − H( X 0 , X 1 , . . . , X n )) , (2) 

where H( x j ) is the entropy and H( X 0 , X 1 , . . . , X n ) is the joint en- 

tropy of the time series data points. τ is at the first local minimum 

of mutual information. 

Embedding dimension m is another vital parameter for PSR, 

which is not previously known. Many methods seek to deter- 

mine the dimension parameter, including the global false nearest- 

neighbor technique and the Cao method ( Cao, 1997 ). We adopt 

the Cao method for its robust handling of noise and because it 

presents no need to set threshold values manually. The related pro- 

cess of calculating m is as follows ( Cao, 1997 ): 

Y i (m ) = ( x i , x i + τ , . . . , x i +(m −1) τ ) , i = 1 , 2 , . . . , N − (m − 1) τ, 

(3) 

where m is the embedding dimension, τ is the time lag, and Y i (m ) 

denotes the i th reconstruction vector with embedding dimension 

m . Moreover, let 

a (i, m ) = 

∥∥Y i (m + 1) − Y n (i,m ) (m + 1) 
∥∥∥∥Y i ( m ) − Y n (i,m ) (m ) 

∥∥ i = 1 , 2 , . . . , N − mτ, 

(4) 

where ‖ Y k (m ) − Y l (m ) ‖ = max 
0 ≤ j≤m −1 

| x k + jτ − x l+ jτ | and a (i, m ) (1 ≤
a (i, m ) ≤ N − mτ ) is an integer such that Y n (i,m ) (m ) is the nearest 

neighbor of Y i (m ) in the m -dimensional reconstructed phase space. 

2.2. Manifold Learning 

A manifold can be viewed as a nonlinear object that is locally 

linear ( Jamshidi, Kirby, & Broomhead, 2011 ). For high-dimensional 

real world data, a perceptually meaningful structure has few de- 

grees of freedom. In other words, high-dimensional data points can 

be mapped into a surrogate low-dimensional space ( Seung & Lee, 

20 0 0 ). Hence, it is possible to construct a mapping that obeys spe- 

cific properties of the manifold and obtains low-dimensional rep- 

resentation of high-dimensional data while preserving the intrinsic 

structure underlying the data ( Lin & Zha, 2008 ). 

Of the many manifold learning methods, ISOMAP and LLE are 

the earliest. The key idea of the ISOMAP algorithm is to maintain 

geodesic distance among points on the manifold and embedded 

data into low-dimensional space through multidimensional scaling. 

LLE calculates the reconstruction weights of each point and mini- 

mizes embedding cost by solving an eigenvalue problem to pre- 

serve the proximity relationship among data. LTSA constructs local 

linear approximations of the manifold by using a collection of over- 

lapping approximate tangent spaces at each data point and aligns 

these tangent spaces to obtain a global parameterization of the 

manifold ( Zhang & Zha, 2004 ). LTSA maps the high-dimensional 

data points on a manifold to points in a lower-dimension Euclidean 

space. This mapping is isometric if the manifold is isometric to its 

parameter space. Local Multidimensional Scaling (LMDS) is a data 

embedding method based on the alignment of overlapping locally 

scaled patches, and its inputs are local distances ( Yang, 2008 ). A 

subset of overlapping patches is chosen by a greedy approximation 

algorithm of minimum set cover. The patches are aligned to derive 

global coordinates and minimize a residual measure. LMDS is lo- 

cally isometric and scales with the number of patches rather than 

the number of data points. LMDS produces less deformed embed- 

ding results than LLE. Also a common nonlinear method for dimen- 

sion reduction, Kernel Principal Component Analysis (KPCA) is a 

kernel extension of PCA and a special manifold learning algorithm. 

KPCA conducts traditional PCA in a kernel feature space, which is 

nonlinearly related to the input space ( Jenssen, 2010 ). 

These manifold learning algorithms use a geodesic distance 

metric or weight measurement to calculate similarities among data 

points. In financial practice, considering only the geometric struc- 

ture of a data space disguises essential characteristics of the data 

and destroys the proximity relations (topology) of the original data 

space. 

2.3. Information distance metric 

The theoretical basis of information distance originates in Shan- 

non information theory and Kolmogorov complexity theory. It is 

framed as the universal cognitive similarity distance that measures 

the essential relationship between things ( Kolmogorov, 1965 ). Ow- 

ing to its parameter-free, feature-free, and alignment-free charac- 

teristics, it can be used to manage unstructured and incompre- 

hensible data. The information distance metric ( Bennett, Gács, Li, 

Vitányi, & Zurek, 1998 ) is the Riemannian metric between PDFs p 1 
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