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a b s t r a c t 

A class of liner fleet deployment models in the literature is revisited. We point to an implicit (and un- 

necessary) assumption in this class of models that can lead to fleet deployment plans that employ more 

vessels than strictly necessary. New analytical results are derived to relax this assumption, leading to a 

new and more realistic liner fleet deployment model. In a case study, it is found that the new model can 

lead to a substantial reduction in the fleet deployment cost, up to 15 percent. Moreover, it is observed 

that the new model is particularly timely in the current era where vessel sharing agreements and mega 

vessels are the norm, as the cost savings grow with the vessel size. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

One decision of critical importance faced by shipping lines is 

the fleet deployment problem in which the number and types 

of ships to be assigned to the shipping routes need to be deter- 

mined, in order to maximize profits ( Christiansen, Fagerholt, Ny- 

green, & Ronen, 2013 ). This fleet deployment problem has been 

first addressed in the literature by Perakis and Jaramillo (1991) and 

Jaramillo and Perakis (1991) who formulated (integer) linear pro- 

gramming models for this planning problem. In these early and 

subsequent studies, it was customary to assume that the con- 

tainer shipping demand is known with complete certainty. Re- 

cently, this assumption has been relaxed, and shipping demand 

has been more realistically modeled as random variables (e.g. see 

Meng & Wang, 2010; Meng, Wang, & Wang, 2012; Ng, 2014, 2015; 

Wang, Meng, Wang, & Tan, 2013 ). Note that others have examined 

the fleet deployment problem in conjunction with other decision 

problems, including the liner network design problem, the mar- 

itime fleet size and mix problem and sailing speed optimization 

(e.g. see Andersson, Fagerholt, & Hobbesland, 2015; Brouer, Alvarez, 

Plum, Pisinger, & Sigurd, 2013; Huang, Hu, & Yang, 2015; Mulder & 

Dekker, 2014; Pantuso, Fagerholt, & Hvattum, 2014; Plum, Pisinger, 

& Sigurd, 2013 ). 

In this paper, we revisit a variation of the liner fleet deploy- 

ment model in the literature (e.g. see Meng & Wang, 2010; Meng 

et al., 2012; Wang, Wang, & Meng, 2011 ), and point to an implicit 

assumption in this class of models that can be relaxed “at no 

cost”. This hidden assumption can lead to fleet deployment plans 

that employ more vessels than strictly necessary. To relax this 
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assumption, new analytical results are derived, and a new liner 

fleet deployment model is presented. In a case study, it is then 

shown that the new model can lead to a substantial reduction in 

the fleet deployment cost, up to 15 percent. 

The remainder of this paper is organized as follows. In 

Section 2 , a variation of an existing liner fleet deployment model 

is presented. One of its hidden assumptions is then uncovered 

in Section 3 , together with new analytical results to relax the 

assumption, leading to a new liner fleet deployment model. A case 

study illustrates the proposed model in Section 4 , showing that 

significant cost savings are possible. Finally, Section 5 concludes 

the paper. 

2. A class of liner fleet deployment model 

Before a new liner fleet deployment model is presented, in this 

section we first briefly examine an existing variation of a class of 

liner fleet deployment model (e.g. see Meng & Wang, 2010; Meng 

et al., 2012; Wang et al., 2011 ). 

Sets 

R Set of routes 

K Set of ship types 

Parameters 

c v 
kr 

The operating cost for a voyage (also referred to as 

roundtrip and loop in this paper) for a ship of type k ∈ K

on route r ∈ R 

c i 
k 

The cost of chartering in a ship of type k ∈ K

c o 
k 

The revenue of chartering out a ship of type k ∈ K

l k The number of ships of type k ∈ K available in the liner 

company’s own fleet 
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m k The maximum number of ships of type k ∈ K that can be 

chartered from other ship owners 

n r The number of voyages required on route r ∈ R to main- 

tain the liner’s desired minimum sailing frequency 

h The planning horizon under consideration (in days) 

t kr The transit time of a ship of type k ∈ K traversing route 

r ∈ R (in days) 

q k The capacity of a ship of type k ∈ K (in TEU) 

d r The maximum shipping demand among all port pairs on 

route r ∈ R 

M k A sufficiently large number, e.g. l k + m k , k ∈ K

Decision variables 

u kr The total number of ships of type k ∈ K to be deployed 

on route r 

v k The number of ships of type k ∈ K to be chartered from 

other ship owners 

w k The number of ships of type k ∈ K to be chartered out 

x kr The total number of complete voyages (i.e. roundtrips) 

ships of type k ∈ K completes on route r ∈ R 

y kr Equals 1 if vessels of type k ∈ K are deployed on route 

r ∈ R , 0 otherwise. 

Model (D1) 

min 

∑ 

k 

∑ 

r 
c v kr x kr + 

∑ 

k 
c i k v k −

∑ 

k 
c o k w k (1) 

subject to: 
∑ 

r 
u kr ≤ l k + v k , ∀ k ∈ K (2) 

v k ≤ m k , ∀ k ∈ K (3) 

w k = l k + v k −
∑ 

r 
u kr , ∀ k ∈ K (4) 

x kr ≤ u kr � h/ t kr � , ∀ k ∈ K, ∀ r ∈ R (5) 

∑ 

k 
x kr ≥ n r , ∀ r ∈ R (6) 

∑ 

k 
x kr q k ≥ d r , ∀ r ∈ R (7) 

u kr ≤ M k y kr , ∀ k ∈ K, ∀ r ∈ R (8) 

∑ 

k 
y kr = 1 , ∀ r ∈ R (9) 

v k , w k ≥ 0 , ∀ k ∈ K, ∀ r ∈ R (10) 

u kr , x kr ≥ 0 and integer , ∀ k ∈ K, ∀ r ∈ R (11) 

y kr ∈ { 0 , 1 } , ∀ k ∈ K, ∀ r ∈ R (12) 

The objective function ( 1 ) states that the goal is to minimize 

the total cost, considering the operating cost, the cost of chartering 

ships and the revenue from chartering ships out. Constraint ( 2 ) en- 

sures that the total number of ships (of type k ) deployed does not 

exceed what is available to the shipping company. In constraint ( 3 ), 

a maximum is imposed on the number of ships that can be char- 

tered from others, whereas constraint ( 4 ) is a conservation con- 

straint that ensures that all ships that are not deployed are char- 

tered out to maximize profit. The maximum number of complete 

voyages (on route r ) ships of type k can make within the planning 

horizon of h days is given by the product of u kr (the number of 

ships of type k assigned to route r ) and � h/ t kr � , where � a � denotes 

the largest integer smaller or equal to a , see constraint ( 5 ). Con- 

straint ( 6 ) states that the number of voyages to be completed on 

route r should at least correspond to the liner’s desired minimum 

sailing frequency on route r . Constraint ( 7 ) guarantees that the de- 

ployed vessel capacity is sufficient to transport the container de- 

mand between all port pairs on route r. (It is to be noted that the 

results in this paper can be readily adapted to the case of uncer- 

tain demand, see Ng, 2014, 2015 ). Constraints ( 8 ) and ( 9 ) ensure 

Fig. 1. Illustrative example. 

that only one vessel type will be used on route r ( Ng, 2015 ). In- 

deed, if y kr = 1 , indicating that vessels of type k are deployed on 

route r , then ( 8 ) simply becomes redundant. On the other hand, 

if y kr = 0 , u kr will be equal to zero because of ( 8 ). Constraint ( 5 ) 

then ensures that x kr equals zero. The remaining constraints ( 10 )–

( 12 ) enforce non-negativity and integrality of the decision variables 

in the model. 

3. Uncovering an implicit assumption in Model (D1) and new 

analytical results 

In this section we uncover an implicit assumption in Model 

(D1) and derive new analytical results for more cost-effective fleet 

deployment plans. 

One implicit assumption in constraints ( 5 ) and ( 7 ) is that con- 

tainers can only be transported between port pairs if vessels com- 

plete an entire loop. That is, if a vessel departs from a given port, 

visits various ports on its journey, but is only able to return to its 

initial port at time h + ε, where ε > 0 is an arbitrarily small num- 

ber, then Model (D1) would consider this vessel as being unable 

to transport any containers within the planning horizon . Indeed, in 

such a case � h/ t kr � = 0 , and thus, x kr = 0 , by constraint ( 5 ). Con- 

straint ( 7 ) then states that no such vessel can carry any containers 

that count toward satisfying the shipping demand. In other words, 

such vessels will not be deployed, no matter how low its voyage 

cost c v 
kr 

is. 

As an alternative illustration of this phenomenon, suppose that 

h = 30 days and t kr = 8 days. If u kr = 2 , then the time separation 

between the two vessels (vessels 1 and 2) is 4 days at all times 

(since otherwise the vessel service would not be regular). As im- 

plicitly in ( 5 ), suppose that vessel 1 starts from Port A and vessel 

2 from Port B. Fig. 1 illustrates this scenario. 

Within the planning horizon, it is clear that each vessel can 

sail 3 complete loops, transporting up to 6 q k TEUs from Port A to 

Port B (and from Port B to Port A), as given by ( 5 ). After the 3 

loops, there are 6 days left before the end of the planning hori- 

zon. Within these 6 days, it is easy to see that vessel 1 (vessel 2) 

can transport up to an additional q k TEUs from Port A to Port B 

(from Port B to Port A). That is, the maximum number of TEU’s 

that can be transported from Port A to Port B (and Port B to Port 

A) within the planning horizon is 7 q k TEUs, which is strictly more 

than what Model (D1) allows ( 6 q k TEUs). Consequently, as will be 

numerically demonstrated in our case study in Section 4 , the num- 

ber of vessels assigned to the routes can be unnecessarily large in 

Model (D1), leading to unnecessarily high costs. 

Since there is no reason why container movements as part of par- 

tial loops should not be considered , next we extend Model (D1) 

to account for such partial loops. To this end, we first need 

Lemma 1 that generalizes the above discussion. 

Lemma 1. The number of times each port on route r can be visited 

within the planning horizon by a vessel of type k is given by 

u kr � h/ t kr � + � u kr ( h/ t kr − � h/ t kr � ) � (13) 

That is, by focusing on both complete and partial loops, the 

number of TEUs that can be transported to each port within the 

planning horizon, increases by ( � u kr ( h/ t kr − � h/ t kr � ) � ) q k . 
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