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a b s t r a c t 

In this paper, we analyze the strength of split cuts in a lift-and-project framework. We first observe that 

the Lovász–Schrijver and Sherali–Adams lift-and-project operator hierarchies can be viewed as applying 

specific 0–1 split cuts to an appropriate extended formulation and demonstrate how to strengthen these 

hierarchies using additional split cuts. More precisely, we define a new operator that adds all 0–1 split 

cuts to the extended formulation. For 0–1 mixed-integer sets with k binary variables, this new operator 

is guaranteed to obtain the integer hull in � k /2 � steps compared to k steps for the Lovász–Schrijver or 

the Sherali–Adams operator. We also present computational results on the stable set problem with our 

new operator. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

For a given 0–1 mixed integer set P IP , defined as the intersec- 

tion of a polyhedron P and { 0 , 1 } n 1 × R 

n 2 , a fundamental goal in 

integer programing is to obtain a better approximation of its con- 

vex hull than P . A set is called a strong relaxation of the set P IP if it 

contains P IP and at the same time is strictly contained in P . Start- 

ing with the pioneering work of Gomory (1963) on cutting planes, 

different techniques have been developed to build strong relax- 

ations. Lift-and-project techniques such as the ones developed by 

Sherali and Adams (1990) , Lovász and Schrijver (1991) , Balas, Ce- 

ria, and Cornuéjols (1993) and Lasserre (2001) , obtain strong relax- 

ations by first formulating a set in a higher dimensional space and 

then projecting this set onto the space of the original variables. 

In this paper, we describe a new lift-and-project operator that is 

closely related to the Sherali–Adams and Lovász–Schrijver (without 

semidefiniteness) operators. Similar to their operators, our opera- 

tor also produces polyhedral relaxations in the original space. Both 

of these operators yield a hierarchy of relaxations H 

1 , H 

2 , . . . , H 

n 1 

of P IP with the following property: 

P ⊇ H 

1 ⊇ H 

2 ⊇ · · · ⊇ H 

n 1 = conv (P IP ) . 

Therefore, these operators obtain the convex hull of P IP in at most 

n 1 steps and there are examples where n 1 steps are necessary 

( Cook & Dash, 2001; Laurent, 2003 ). See ( Conforti, Cornuejols, & 

Zambelli, 2014; Laurent, 2003 ) for a review and comparison of 
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these hierarchies. The new operator we describe in this paper is 

guaranteed to obtain the integer hull in � n 1 /2 � steps instead. 

In an earlier paper ( Bodur, Dash, & Günlük, 2015 ), for every 0–1 

mixed-integer set P IP with n 1 integer and n 2 continuous variables 

we showed how to construct an extended formulation of P (which 

we call an extended LP formulation of P IP ) with n 1 − 1 additional 

continuous variables whose 0–1 split closure is integral. It is well- 

known that the 0–1 split closure of a 0–1 mixed-integer set can be 

computed in time bounded by a polynomial function of the encod- 

ing size of P – i.e., the number of bits required to represent the in- 

equalities defining P (and we describe this computation more pre- 

cisely later). The extended LP formulation presented in Bodur et al. 

(2015) is only of theoretical interest, as it requires the list of all 

extreme points and rays of P , which could be of exponential size. 

The new operator we describe in this paper can be viewed as the 

0–1 split closure of an extended LP formulation that is of poly- 

nomial size, and it is therefore possible to optimize over its 0–1 

split closure in polynomial time. The extended LP formulation we 

use is implicitly constructed by the Lovász–Schrijver and Sherali–

Adams operators, and we show that the “strengthening step” of 

these operators can be interpreted as adding certain 0–1 split cuts 

to this extended LP formulation. Thus our new operator is stronger 

than the Lovász–Schrijver operator, and we give upper and lower 

bounds on its strength: we show that our operator can be stronger 

than the first-level of the Sherali–Adams hierarchy (which equals 

the Lovász–Schrijver operator), but is weaker than the second-level 

of the hierarchy. 

In the next section we present some background on split cuts 

and extended formulations. In Section 3 , we describe the Lovász–

Schrijver and Sherali–Adams lift-and-project operators, and the 
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extended LP formulation implicitly constructed by these operators. 

We define our new lift-and-project operator in terms of the 0–

1 split closure of this extended LP formulation, and show that 

one can optimize over the resulting set of points in polynomial 

time, as in the case of the Lovász–Schrijver operator. We also show 

that the second-level of the Sherali–Adams hierarchy is stronger 

than this new operator. Finally in Section 4 , we apply our operator 

to the stable set polytope and perform numerical experiments to 

compare its computational performance with that of the Lovász–

Schrijver and Sherali–Adams operators. 

2. Preliminaries 

We use R 

n and Z 

n , respectively, for the set of n -dimensional 

real and integer vectors. Throughout the paper, we work with 0–1 

mixed-integer sets of the form P IP = P ∩ (Z 

n 1 × R 

n 2 ) where 

P = { x ∈ R 

n : Ax ≤ b} , 
n = n 1 + n 2 and n 1 > 0, and the inequality system Ax ≤ b contains 

the inequalities 0 ≤ x i ≤ 1 for all i = 1 , . . . , n 1 . We refer to P as the 

LP relaxation of P IP . 

2.1. Extended LP formulations 

Let Q = { (x, y ) ∈ R 

n × R 

q : Cx + Dy ≤ g} be a polyhedron, and let 

the number of inequalities in Cx + Dy ≤ g be t . Q is called an ex- 

tended formulation of P if 

P = proj x ( Q ) , 

where proj x ( Q ) stands for the orthogonal projection of Q onto the 

space of x variables. More precisely, 

proj x ( Q ) = { x ∈ R 

n : ∃ y ∈ R 

q s.t. (x, y ) ∈ Q} . 
Alternatively, proj x ( Q ) = { x ∈ R 

n : u T Cx ≤ u T g, ∀ u ∈ U} , where U = 

{ u ∈ R 

t : u T D = 0 , u ≥ 0 } is the projection cone of Q . This immedi- 

ately implies that the projection of a polyhedron is a polyhedron. 

For more properties of projection, we refer the reader to Balas 

(2005) . Throughout the paper we call Q an extended LP formulation 

of P IP as it is an extended formulation of its LP relaxation. 

2.2. 0–1 Split cuts 

For a given i ∈ I = { 1 , . . . , n 1 } , consider the 0–1 split set 

S i = 

{
x ∈ R 

n : 0 < x i < 1 } , 
and note that S i has an empty intersection with Z 

n 1 × R 

n 2 . The 

inequality c T x ≥ d , where c ∈ R 

n and d ∈ R , is called a 0–1 split 

cut for P generated by S i if it is valid for conv( P �S i ). Here we use 

conv( ·) to denote the convex hull operator. In other words, c T x ≥ d 

is a 0–1 split cut if it is valid for the disjunction P ∩ { x ∈ R 

n : x i = 

0 } or P ∩ { x ∈ R 

n : x i = 1 } . A split cut is called nondominated if it is 

not implied by a collection of other split cuts. We note that mul- 

tiple nondominated split cuts may be generated by the same split 

set S i . We denote the split closure of P with respect to 0–1 split cuts 

(or the 0–1 split closure for short) as 

S(P ) = 

⋂ 

i ∈ I 
conv (P \ S i ) . 

Clearly, P IP ⊆ S(P ) ⊆ P . S(P ) is a relaxation of the general split clo- 

sure defined in Cook, Kannan, and Schrijver (1990) where more 

general two-term disjunctions are used to generate cuts. 

Furthermore, as S(P ) is a polyhedron, it is possible to repeat 

this operation. For any given integer k ≥ 0, the k th 0–1 split closure 

of P , denoted as S k (P ) , is defined iteratively as follows: S 0 (P ) = P 

and S k (P ) = S (S k −1 (P )) for k ≥ 1. Balas et al. (1993) proved that it 

is sufficient to repeat this operation n 1 times to obtain the convex 

hull of P IP , establishing that S n 1 (P ) = conv (P IP ). 

We also note that S(P ) can be explicitly written as the projec- 

tion of an extended formulation using Balas’ result on convex hulls 

of unions of polyhedra (Balas, 1985, Thm 3.3) as follows: 

S(P ) = 

{ 

x ∈ R 

n : ∃ x̄ i , ̄̄x i ∈ R 

n , λ̄i , ̄̄λi ∈ R + s.t. (1) 

x = x̄ i + 

¯̄x i , λ̄i + ̄̄λi = 1 , i ∈ I, 

A ̄x i ≤ λ̄i b, A ̄̄x i ≤ ¯̄λi b, i ∈ I, 

x̄ i i = 1 , ¯̄x i i = 0 i ∈ I 

} 

, 

where R + denotes the set of nonnegative real numbers. Note that 

formulation (1) is of polynomial size (in the encoding size of P ) 

and therefore one can optimize a linear function over it in poly- 

nomial time. However, describing the projected set S(P ) by an ex- 

plicit list of linear inequalities in R 

n may require an exponential 

number of inequalities. An important point we wish to emphasize 

is that in contrast to S(P ) , it is NP-hard to optimize over the gen- 

eral split closure of P . 

Given an extended formulation Q ⊆ R 

n + q of P , the 0–1 split clo- 

sure of Q is defined as 

S(Q ) = 

⋂ 

i ∈ I 
conv (Q \ S + 

i 
) , 

where S + 
i 

= S i × R 

q . Clearly S(Q ) can also be explicitly written 

via an extended formulation similar to (1) . Therefore, optimization 

over S(Q ) can also be done in polynomial time provided that Q is 

of polynomial size. 

2.3. Strengthening extended LP formulations with 0–1 split cuts 

In terms of optimizing a linear function over the mixed-integer 

set P IP , the extended LP formulation Q does not lead to better 

bounds than the original LP relaxation P as 

max { c T x : x ∈ P } = max { c T x : (x, y ) ∈ Q} 
for any c ∈ R 

n . However, after the addition of split cuts, extended 

LP formulations might yield better bounds. 

In Bodur et al. (2014) , we show that for any split set, and in 

particular for any 0–1 split set S i , 

proj x 
(
conv (Q \ S + 

i 
) 
)

= conv (P \ S i ) . 
However, 

proj x ( S(Q ) ) ⊆ S(P ) , 

and the inclusion above is strict in some cases. Therefore adding 

split cuts to an extended LP formulation can lead to strictly better 

relaxations than adding split cuts to the original LP relaxation. This, 

however, can happen only if split cuts generated by multiple split 

sets are used simultaneously. 

Later, in Bodur et al. (2015) , we show that there exists an ex- 

tended LP formulation Q 

∗ ⊆ R 

n + n 1 −1 of the set P IP such that the 

0–1 split closure of Q 

∗ is integral, that is, 

proj x ( S(Q 

∗) ) = conv (P IP ) . 

Even though the proof of this result is constructive, it requires an 

inner description of the set P (i.e., all its extreme points and rays) 

which is usually difficult to compute from the inequality descrip- 

tion of P , i.e., from Ax ≤ b . Moreover, the number of extreme points 

and rays of P may be exponential in the encoding size of P . Conse- 

quently, the approach described in Bodur et al. (2015) is not practi- 

cal. In the next section we consider extended LP formulations that 

can be obtained in polynomial time from Ax ≤ b . 
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