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a b s t r a c t 

Given two sets, R and B , consisting of n cities each, in the bipartite traveling salesman problem one looks 

for the shortest way of visiting alternately the cities of R and B , returning to the city of origin. This 

problem is known to be NP-hard for arbitrary sets R and B . In this paper we provide an O ( n 6 ) algorithm 

to solve the bipartite traveling salesman problem if the quadrangle property holds. In particular, this 

algorithm can be applied to solve in O ( n 6 ) time the bipartite traveling salesman problem in the following 

cases: S = R ∪ B is a convex point set in the plane, S = R ∪ B is the set of vertices of a simple polygon and 

V = R ∪ B is the set of vertices of a circular graph. For this last case, we also describe another algorithm 

which runs in O ( n 2 ) time. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Background and prior work 

In the traveling salesman problem (TSP), given a prescribed 

set of cities, one wishes to find the shortest route starting and 

finishing at the same location, visiting each one of the cities 

exactly once. This problem is perhaps one of the most extensively 

studied problems in combinatorial optimization and its different 

variants have many applications in different areas of knowledge, 

including computer science, operations research, genetics, engi- 

neering and electronics. The reader is referred to Gutin abd and 

Punnen (2007) and Lawler, Lenstra, Rinooy, and Shmoys (1985) for 

a review of the state of the art on this problem. 

One of these variants is the bipartite TSP (BTSP). Now, the set 

of cities is partitioned into two classes R and B , with | R | = | B | = 

n, and one wishes to find a shortest route such that the cities 

in R and B alternate along the route. Besides being interesting 

in itself, the BTSP is related to other problems, mainly pickup 

and delivery problems, such as the pick-and-place robots prob- 

lem (or the printed circuit board assembly problem) ( Srivastav, 

Schroeter, & Michel, 2001 ), the k -delivery TSP ( Anily & Bramel, 

1999 ) or the swapping problem ( Anily & Hassin, 1992 ). For an 
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overview on pickup and delivery problems, see Berbeglia, Cordeau, 

Gribkovskaia, and Laporte (2007) . 

In the k -delivery TSP ( k -DTSP), one looks for the shortest route 

to pick up n items located at n source points and deliver them to 

n sink points, using a single vehicle of capacity k and assuming 

that an item at a source point can be delivered to any sink point. 

The BTSP is a special case of the k -DTSP if k = 1 . In the swapping 

problem, the main goal is to find the shortest route to swap n ob- 

jects of m ≤ n different types between n locations using a single 

vehicle with unit capacity. Every location is associated with two 

object types – the one it currently holds and the one it demands –

and holds or demands at most one unit of an object. Moreover, 

the total supply in the network for each object type equals its to- 

tal demand. When there are only two object types, the swapping 

problem is equivalent to the BTSP. The reader is referred to Anily 

and Bramel (1999) , Bhattacharya and Hu (2012) , Chalasani and 

Motwani (1999) , Wang, Lim, and Xu (2006) and Anily, Gendreau, 

and Laporte (1999) , Anily, Gendreau, and Laporte (2011) , Anily and 

Hassin (1992) , Anily and Pfeffer (2013) for different results and 

variants on the k -DTSP and the swapping problem, respectively. 

In the Euclidean BTSP, the cities are assumed to be points in 

the plane and the distance between any two points is the Eu- 

clidean distance. It is well-known that the BTSP and the Euclidean 

BTSP are NP-hard, so there is no polynomial algorithm to solve 

them unless P = NP . Moreover, the problem remains NP-hard even 

in the case of a grid graph. In general, researchers have focused 

on designing good approximation algorithms. We refer the reader 

to Anily and Hassin (1992) , Baltz and Srivastav (2005) , Chalasani, 

Motwani, and Rao (1996) , Frank, Korte, Triesch, and Vygen (1998) , 
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Fig. 1. Left: The shortest Hamiltonian alternating cycle is the criss-cross cycle. Right: The shortest Hamiltonian alternating cycle for another partition of the same convex 

point set. 

Shurbevski, Nagamochi and Karuno (2014) , Srivastav et al. 

(2001) and the references therein for different approximation al- 

gorithms along with experimental results. The best known approx- 

imation factor for the Euclidean BTSP is 2 ( Frank et al., 1998; Cha- 

lasani et al., 1996 ). 

There are also some publications in the literature devoted to 

solving particular cases of the BTSP. In Wang et al. (2006) , the au- 

thors study the k -DTSP for path and tree graphs. In the case of a 

path, they give an O ( n 2 /min { k , n }) algorithm for arbitrary k and 

linear algorithms for k = 1 and k = ∞ . In the case of a tree (see 

also Anily et al., 2011 ), they propose an O ( n 2 ) algorithm for k = 1 

and an O ( n ) algorithm for k = ∞ , and show that the problem be- 

comes NP-hard in strong sense if k is arbitrary. In Bhattacharya and 

Hu (2012) , a linear-time algorithm is described to solve the k -DTSP 

on a path. 

Another particular case of the BTSP studied in the literature 

is related to the shoelace problem ( Halton, 1995 ). In this prob- 

lem, the objective is to find an optimal strategy for lacing shoes 

such that the amount of shoelace used is minimized. When the 

eyelets are arranged in two horizontal lines and two eyelets on 

the same line are not connected consecutively, then the shoelace 

problem is an instance of the BTSP (the eyelets placed on the 

two lines correspond to R and B , respectively). In this case, Halton 

(1995) proved that the optimal way of threading the shoelaces is 

the so-called criss-cross lacing strategy, which corresponds to the 

typical method used in the USA for lacing shoes: threading the 

shoelaces in opposing zigzags, so that they seem to be crossed 

when seen from above. 

Halton’s result was generalized later in Misiurewicz (1996) and 

Deineko and Woeginger (2014) . In both papers the authors show 

that the criss-cross strategy is still the best way of visiting 

the cities under certain constraints on the distance matrix D . If 

1 , 2 , . . . , n and n + 1 , n + 2 , . . . , 2 n are the cities in R and B , respec- 

tively, Misiurewicz (1996) shows that it is sufficient for the dis- 

tance matrix D to satisfy: d (i, j ) + d(k, l) ≤ d(i, l) + d (k, j ) for 1 ≤
i ≤ k ≤ n and n + 1 ≤ j ≤ l ≤ 2 n . In the second paper Deineko and 

Woeginger (2014) prove the result for a relaxation on the Monge 

inequalities for a matrix M and provide an O ( n 4 ) algorithm to de- 

cide whether there is a renumbering of the cities such that the 

resulting distance matrix satisfies this relaxation. 

1.2. The quadrangle property 

A classic example where Misiurewicz’s conditions are satis- 

fied is the following. Consider the set of 2 n vertices of a convex 

polygon and suppose that the clockwise order of the vertices is 

{ 1 , 2 , . . . , 2 n } . Assume that the vertices from 1 to n belong to R , the 

vertices from n + 1 to 2 n belong to B , and that the cost of an edge 

connecting one vertex to another is the Euclidean distance. The 

well-known quadrangle property for a convex quadrilateral states 

that the total length of the diagonals of the quadrilateral is always 

bigger than the total length of two opposite sides. In particular, 

given any four vertices i < k < j < l , with i and k belonging to R 

and j and l to B , the total length of the two crossing edges ( i , j ) 

and ( k , l ) is always bigger than the total length of the two non- 

crossing edges ( i , l ) and ( k , j ). These are Misiurewicz’s conditions 

for reversing the order of the vertices of B . Therefore, the shortest 

way of visiting alternately the vertices in R and B is the criss-cross 

cycle, as is shown in the left part of Fig. 1 . Vertices belonging to 

R are illustrated as solid red points and vertices belonging to B as 

hollow blue points. 

Assume now that the 2 n vertices of the convex polygon are di- 

vided into two arbitrary sets R and B of equal size, as in the right 

part of Fig. 1 . Misiurewicz’s inequalities are no longer satisfied be- 

cause the vertices in R and B are not consecutive in the cyclic or- 

der. However, it is still true that if two edges (segments) of the 

bipartite graph defined by R and B cross, then they can be re- 

placed by two other edges (segments) of the bipartite graph, re- 

ducing the total length. Using this fact, one can still compute the 

shortest Hamiltonian cycle C visiting alternately the vertices in R 

and B , as the right part of Fig. 1 shows. 

These are precisely the types of particular cases of the BTSP we 

study in this paper: instances in which, given a cyclic order on the 

cities, two “crossing edges” can be replaced by two “non-crossing 

edges” without increasing the length. This concept is formalized 

for graphs as follows. 

Definition 1. Let G = (V, E) be an undirected graph on the set of 

vertices V = { 1 , 2 , . . . , N} . For an edge e = (i, j) of E , let d ( i , j ) be 

the cost of e . Assuming that (1 , 2 , . . . , N) is a cyclic order of the 

vertices of G , we say that G satisfies the quadrangle property if 

d(i 1 , i 4 ) + d(i 2 , i 3 ) ≤ d(i 1 , i 3 ) + d(i 2 , i 4 ) 

for any four vertices i 1 , i 2 , i 3 , i 4 such that ( i 1 , i 4 ), ( i 2 , i 3 ), ( i 1 , i 3 ), ( i 2 , 

i 4 ) are edges of E and i 1 < i 2 < i 3 < i 4 cyclically. 

These inequalities, d(i 1 , i 4 ) + d(i 2 , i 3 ) ≤ d(i 1 , i 3 ) + d(i 2 , i 4 ) , are 

usually called quadrangle inequalities. Misiurewicz’s conditions 

correspond to the quadrangle property for the particular case of 

the complete bipartite graph G = (R ∪ B, E) , with R = { 1 , 2 , . . . , n } , 
B = { n + 1 , n + 2 , . . . , 2 n } and the cyclic order (1 , 2 , . . . , n, 2 n, 2 n −
1 , . . . , n + 1) . 

1.3. Our main contribution 

In this paper, we study the BTSP for a complete bipartite graph 

G = (R ∪ B, E) satisfying the quadrangle property, that is, assuming 

that (1 , 2 , . . . , 2 n ) is a cyclic order of the vertices of G , inequality 

d(i 1 , i 4 ) + d(i 2 , i 3 ) ≤ d(i 1 , i 3 ) + d(i 2 , i 4 ) holds for any four vertices 

i 1 , i 2 ∈ R , and i 3 , i 4 ∈ B such that i 1 < i 2 < i 3 < i 4 cyclically. To the 

best of our knowledge, this problem has only been solved when 

R = { 1 , 2 , . . . , n } and B = { n + 1 , n + 2 , . . . , 2 n } ( Misiurewicz, 1996 ). 

We show that there is a shortest cycle for the BTSP in G not con- 

taining a five-point star (defined later). Then, we provide an O ( n 6 ) 
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