
European Journal of Operational Research 256 (2017) 35–43 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Continuous Optimization 

Matrix completion under interval uncertainty 

Jakub Mare ̌cek 

a , ∗, Peter Richtárik 

b , Martin Takáč 
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a b s t r a c t 

Matrix completion under interval uncertainty can be cast as a matrix completion problem with element- 

wise box constraints. We present an efficient alternating-direction parallel coordinate-descent method 

for the problem. We show that the method outperforms any other known method on a benchmark in 

image in-painting in terms of signal-to-noise ratio, and that it provides high-quality solutions for an in- 

stance of collaborative filtering with 100,198,805 recommendations within 5 minutes on a single personal 

computer. 
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1. Introduction 

There has been much recent interest in non-convex optimiza- 

tion problems in statistics, data mining, and machine learning 

communities. Clearly, non-convex optimization is also at the heart 

of operations research ( Olafsson, Li, & Wu, 2008 ), where consider- 

able advances are being made, e.g., in decomposition approaches 

to non-convex optimization, and robust optimization ( Gabrel, Mu- 

rat, & Thiele, 2014 ). In this paper, we present a decomposition ap- 

proach to a robust variant of matrix completion, a key problem in 

data science, with numerous applications ranging from image pro- 

cessing to recommender systems. This shows the value of advances 

in operations research to data science. 

After an informal overview highlighting some key applications, 

we introduce the problem formally in Section 2 . In Section 3 , we 

present our algorithm and its convergence analysis. In Section 4 , 

we present our computational results: In terms of statistical perfor- 

mance, our approach with an explicit consideration of the uncer- 

tainty, outperforms a number of previously proposed approaches 

to matrix completion, on a well-known benchmark. On the compu- 

tational side, our implementation runs within minutes on a stan- 

dard personal computer even on instances with a 480, 189 ×
17, 770 matrix with 100,198,805 non-zero entries, which had been 

previously ( Gemulla, Nijkamp, Haas, & Sismanis, 2011; Li, Tata, & 

Sismanis, 2013; Makari, Teflioudi, Gemulla, Haas, & Sismanis, 2015; 

Teflioudi, Makari, & Gemulla, 2012 ) solved on substantial clusters 
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of computers in comparable times. We conclude with a variety of 

suggestions for future work. 

1.1. An informal overview 

When dimensions of a matrix X and some of its elements 

X i, j , (i, j) ∈ E are known, the matrix completion problem is to find 

the unknown elements. Without imposing any further require- 

ments on X , there are infinitely many solutions. Nevertheless, a 

matrix completion that minimizes the rank: 

min Y rank (Y ) subject to Y i, j = X i, j , (i, j) ∈ E, (1) 

provides the simplest explanation for the known elements, in 

many applications. There is a long history of work on the prob- 

lem, c.f. ( Chistov & Grigoriev, 1984; Koren, Bell, & Volinsky, 2009; 

Sarwar, Karypis, Konstan, & Riedl, 20 0 0; Ye, 20 05 ), with thousands 

of papers published annually since 2010. 

Although we cannot provide a complete overview, let us note 

that Fazel (2002) suggested to replace the rank, which is the count 

of non-zero elements of the spectrum, with the nuclear norm, 

which is the sum of the spectrum. The minimization of the nu- 

clear norm can be cast as a semidefinite programming (SDP) prob- 

lem and approaches based on the nuclear-norm have proven very 

successful in theory ( Candès & Recht, 2009 ) and very popular in 

practice. Cai, Candès, and Shen (2010) , Sarwar et al. (20 0 0) study 

the Singular Value Thresholding (SVT) algorithm. This, however, re- 

quired the computation of a singular value decomposition (SVD) in 

each iteration. A number of other approaches, e.g., augmented La- 

grangian methods ( Tomioka, Suzuki, Sugiyama, & Kashima, 2010 ), 

appeared, but those would require a truncated SVD or a number 
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of iterations ( Jaggi & Sulovský, 2010; Lee & Bresler, 2010; Shalev- 

Shwartz, Gonen, & Shamir, 2011; Wang et al., 2014 ) of the 

power method. Even considering the recent progress in random- 

ized methods for approximating SVD, ( Halko, Martinsson, & Tropp, 

2011 ), the approximation becomes very time-consuming as the di- 

mensions of matrices grow. 

A major computational break-through came in the form of the 

alternating least squares (ALS) algorithms ( Rennie & Srebro, 2005; 

Srebro, Rennie, & Jaakkola, 2004 ). Initially, the algorithm has been 

used as a heuristic for finding stationary points of the non-convex 

problem ( Bell & Koren, 2007; Haldar & Hernando, 2009; Mnih & 

Salakhutdinov, 2007; Rennie & Srebro, 2005; Srebro et al., 2004 ), 

where a single iteration had complexity O (|E| r 2 ) , for |E| obser- 

vations and rank r , c.f., p. 60 in Keshavan (2012) . Keshavan, Mon- 

tanari, and Oh (2010) and Keshavan (2012) , however, proved its 

exponential rate of convergence to the global optimum with high 

probability, under probabilistic assumptions common in the com- 

pressed sensing community. Independently, Cai et al. (2010) ana- 

lyzed matrix completion with an arbitrary convex constraint. Fur- 

ther, more technical analyses of the convergence to the global opti- 

mum have been performed by Jain, Netrapalli, and Sanghavi (2013) . 

Many studies of matrix completion consider the uncertainty, 

in some form. A number of analyses ( Jain et al., 2013; Keshavan, 

2012; Keshavan et al., 2010 ) consider the use of the standard rank- 

minimization for the reconstruction of low-rank m × n matrix 

XY T from XY T + W, where X ∈ R 

m ×r , Y ∈ R 

n ×r , W ∈ R 

m ×n with ele- 

ments of W being bounded i.i.d. random variables, which are sub- 

Gaussian and have bounded expectation. A number of further anal- 

yses ( Candès, Li, Ma, & Wright, 2011; Wright, Ganesh, Rao, Peng, & 

Ma, 2009 ) considered the use of the standard rank-minimization 

for the reconstruction of low-rank m × n matrix XY T from XY T + S, 

where X , Y are as above and W has a small number of non-zero 

entries. Chen, Xu, Caramanis, and Sanghavi (2011) consider some 

columns being corrupted. Although we are not aware of any stud- 

ies of matrix completion under interval uncertainty, interval-based 

uncertainty has been considered in related problems. Alaíz, Din- 

uzzo, and Sra (2013) consider the min-max variant of the problem 

of finding the nearest correlation matrix, i.e., the problem of find- 

ing the closest matrix within the set of symmetric positive definite 

matrices with the unit diagonal to an uncertainty set, with respect 

to the Frobenius norm. Li, Ma, and Pong (2014) studied interval 

uncertainty in certain semidefinite programming problems, which 

can be used to encode the nuclear-norm minimization. 

We present an explicit extension of matrix completion towards 

interval uncertainty, which has applications in image in-painting, 

collaborative filtering, and beyond. The algorithm we present for 

solving the problem can be seen as a coordinate-wise version of 

the ALS algorithm, which does not require the approximation of 

the spectrum of the matrix. Before we proceed to describe the ac- 

tual algorithm, we provide a motivating overview of the possible 

applications. 

1.2. Collaborative filtering under uncertainty 

Collaborative filtering is a well-established application of matrix 

completion problems ( Srebro, 2004 ), largely thanks to the success 

of the Netflix Prize. There is a matrix, where each row corresponds 

to one user and each column corresponds to a product or service. 

Considering that every user rates only a modest number of prod- 

ucts or services, there are only a small number of entries of the 

matrix known. Our extension is motivated by the fact, that one 

user may provide two different ratings for one and the same prod- 

uct at two different times, depending on the current mood and 

other circumstances at the two times. One may hence want to con- 

sider an interval [ x , x ] instead of a fixed value x of the rating, e.g., 

[ x − ε, x + ε] . Further, when one knows the scale [0, M ] the rating 

x is chosen from, one can consider [ max { 0 , x − ε} , min { x + ε, M} ] . 
Hence, if intervals are known for elements X i , j of a matrix X in- 

dexed by (i, j) ∈ I, one may want to solve: 

min 

Y i, j ∈ [0 ,M] 
max 

X i, j ∈ [ X i, j , X i, j ] ∀ (i, j) ∈I 
rank (Y ) (2) 

subject to Y i, j = X i, j , ∀ (i, j) ∈ I. 

Although numerous extensions of matrix completion problems 

have been studied, e.g. ( Mehta, Hofmann, & Nejdl, 2007 ), the 

use of robustness to interval uncertainty is novel. It can be seen 

as an extension of robust optimization ( Soyster, 1973 ) to matrix 

completion. 

1.3. Image in-painting 

Further applications can be found in image processing. In in- 

painting problems, a subset of pixels from an image are given and 

the goal is to fill in the missing pixels. Rank-constrained matrix 

completion with equalities, where I is the index set of all known 

pixels, has been used numerous times ( Candès & Recht, 2009; 

Goldfarb, Ma, & Wen, 2009; Jaggi & Sulovský, 2010; Jain, Meka, & 

Dhillon, 2010; Lee & Bresler, 2010; Mazumder, Hastie, & Tibshirani, 

2010; Wang et al., 2014 ) in this setting. If the image comes from 

real sensors, it the corresponding matrix may have full (numerical) 

rank, but have quickly decreasing singular values in its spectrum. 

In such a case, instead of solving the equality-constrained problem 

(1) , one should like to find a low-rank approximation Y ∗ of X , such 

that the known entry of X is not far away from Y ∗, i.e., ∀ (i, j) ∈ I
we have Y i , j ≈ X i , j . Let us illustrate this with a small matrix 

X = 

( 

68 . 16 78 . 12 24 . 04 

78 . 12 90 . 09 30 . 03 

24 . 04 30 . 03 20 . 01 

) 

, 

which has rank 3 and its singular values � = 

(167 . 9945 , 10 . 2553 , 0 . 0102) T . It is easy to verify that 

Y ∗(2) = 

( 

68 . 1546 78 . 1250 24 . 0389 

78 . 1250 90 . 0853 30 . 0310 

24 . 0389 30 . 0310 20 . 0098 

) 

is the best rank 2 approximation of X in Frobenius norm. Observe 

that no single element of Y ∗(2) is identical to X , but that Y ∗(2) ≈
X . It is an easy exercise to show that for any X ∈ R 

m ×n with sin- 

gular values σ1 ≥ σ2 ≥ · · · ≥ σmin { m,n } , and Y ∗( r ) as its best rank- 

r approximation, we have | X i, j − (Y ∗(r)) i, j | ≤ ∑ min { m,n } 
i = r+1 

σi =: R (r) 

for all ( i , j ). Therefore, one should not use equality constrains 

in (1) , but rather inequalities | Y i, j − X i, j | ≤ R (r) , ∀ (i, j) ∈ I . Notice 

that this approach is not the same as minimizing 
∑ 

(i, j) ∈I (X i, j −
Y i, j ) 

2 over all rank r matrices, because we do not penalize the 

elements of Y , which are already close to X . It is also different 

from the usual treatment of noise in the observations ( Candès & 

Plan, 2010 ). One could rather formulate this as the minimization 

of 
∑ 

(i, j) ∈I max { 0 , | X i, j − Y i, j | − R (r) } 2 over all rank r matrices. Fur- 

ther, one knows the range of values allowed, e.g., [0, 1] for a com- 

mon encoding of gray-scale images. This can hence be seen as 

“side information” which, as we will show in Section 4 , improves 

the recovery of a low-rank approximation considerably. Further 

still, one could assume that the intensity should be at least 0.8, 

if pixels are missing within a light region of the image, or similar 

domain-specific heuristics. 

A number of other applications, e.g., in the recovery of struc- 

tured matrices ( Chen & Chi, 2013 ), in certain forecasting problems 

with periodic time series and side information, and in sparse prin- 

cipal component analysis with priors on the principal components 

can be envisioned. Some are discussed in Section 5 . Now, let us 

introduce our notation and formalize the problem. 
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