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a b s t r a c t 

This paper addresses the discrete p -dispersion problem (PDP) which is about selecting p facilities from 

a given set of candidates in such a way that the minimum distance between selected facilities is max- 

imized. We propose a new compact formulation for this problem. In addition, we discuss two simple 

enhancements of the new formulation: Simple bounds on the optimal distance can be exploited to re- 

duce the size and to increase the tightness of the model at a relatively low cost of additional computa- 

tion time. Moreover, the new formulation can be further strengthened by adding valid inequalities. We 

present a computational study carried out over a set of large-scale test instances in order to compare the 

new formulation against a standard mixed-integer programming model of the PDP, a line search, and a 

binary search. Our numerical results indicate that the new formulation in combination with the simple 

bounds is solved to optimality by an out-of-the-box mixed-integer programming solver in 34 out of 40 

instances, while this is neither possible with the standard model nor with the search procedures. For 

instances in which the line and binary search fail to find a provably optimal solution, we achieve this by 

adding cuts to our enhanced formulation. With the new techniques we are able to exactly solve instances 

of one order of magnitude larger than previously solved in the literature. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the p -dispersion problem (PDP), we are given a set of candi- 

date locations I = { 1 , 2 , . . . , n } and an n × n matrix ( d ij ) i , j ∈ I with 

distances d ij between facility i and j . The optimization task is to 

select 1 < p < n facilities from I such that the minimum distance 

between any pair of selected facilities is maximized. 

In practice, this location problem occurs whenever a close 

proximity of facilities is less desirable. A standard application is 

concerned with the location of nuclear power plants. Therein, one 

is interested in minimizing the risk of losing multiple plants in 

the event that only one plant is subjected to an enemy attack. 

To achieve this, a selection of plants is desired so that interplant 

distances are as large as possible. Similar applications can be 

found in the military sector. In more peaceful contexts, one seeks 

for facilities of the same franchise system or for public facilities 

which have overlapping areas of service, e.g., schools, hospitals, 

waste collection plants, or electoral districts. We refer the reader 

to Kuby (1987) and to the comprehensive survey of Erkut and 

Neuman (1989) for an overview on the variety of applications of 

the PDP. Another area of application is recognized if distances 

are not interpreted physically but as a measure of the diversity 
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between members of a group, e.g., products of the same portfolio 

( Saboonchi, Hansen, & Perron, 2014 ). 

The contribution of this paper is a new compact formulation of 

the PDP. To highlight the main objective pursued with this model, 

note that we intend to provide a competitive exact approach for 

the PDP in which a major part of the overall optimization task is 

undertaken by an out-of-the-box software package. To make the 

new model competitive, it is delivered along with two simple en- 

hancements: We exploit simple bounds on the optimal distance to 

reduce the size and to increase the tightness of the model. The 

bounds are obtained by very simple heuristics that are already 

known in the literature. We show that clique inequalities are valid 

for the new model and can be used to further strengthen it. For the 

separation of the clique cuts, we also suggest a greedy heuristic in 

order to keep the coding effort and the computational burden as 

low as possible. 

We carry out computational experiments over large-scale test 

instances in order to compare the new formulation against a stan- 

dard mixed-integer programming model. The enhanced formula- 

tion is solved to optimality by a mixed-integer programming solver 

in 34 out of 40 test instances, while this is not possible with the 

standard model. We also compare our enhanced model against two 

standard search procedures for the PDP, i.e., a line search and a bi- 

nary search. This comparison is interesting because these search 

procedures are easy-to-implement and exact making use of the re- 

lationship between the PDP and the maximum independent set 

http://dx.doi.org/10.1016/j.ejor.2016.06.036 

0377-2217/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.ejor.2016.06.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.06.036&domain=pdf
mailto:sayah@uni-mainz.de
http://dx.doi.org/10.1016/j.ejor.2016.06.036


D. Sayah, S. Irnich / European Journal of Operational Research 256 (2017) 62–67 63 

problem. For instances in which either line or binary search, or 

both, fail to find a provably optimal solution, we achieve this by 

adding the clique cuts to our formulation. 

The remainder of the paper is structured as follows: In 

Section 2 , we present non-linear and linearized PDP formulations 

from the literature and introduce our new compact formulation 

that is based on exploiting the relationship between PDP and the 

independent set problem. Section 3 describes the setup of the 

computational study and its results. In the concluding Section 4 , 

we briefly hint at potential algorithmic improvements and related 

dispersion problems for which the approach taken in this paper 

might be promising. 

2. Formulations 

Without loss of generality, we assume that the distance ma- 

trix ( d ij ) is symmetric and that any non-diagonal value is strictly 

positive. All formulations are based on a graph representation of 

the problem. Let ( I , E ) be the complete graph in which locations I 

are the vertices and E = { (i, j) ∈ I × I : i < j} are the edges. Given 

any distance d , we further define subsets of edges as 

E(d) = { (i, j) ∈ E : d i j < d} ⊆ E. 

The PDP is a bottleneck optimization problem with a max–

min objective function ( Hsu & Nemhauser, 1979 ). We now briefly 

review two existing non-linear formulations exploiting this fact 

before we present a standard mixed integer linear programming 

(MILP) model and our new formulation. 

2.1. Non-linear formulations 

The first formulation is the mixed integer non-linear program 

of Pisinger (2006) : Define a vector of location variables x = (x i ) i ∈ I 
and let x i = 1 indicate that candidate location i ∈ I is open (0, oth- 

erwise). Using a continuous variable d ≥ 0 for the minimum dis- 

tance between open locations, the PDP can be written as 

Z = max d (1a) 

s.t. 
∑ 

i ∈ I 
x i = p (1b) 

d x i x j ≤ d i j (i, j ) ∈ E (1c) 

x i ∈ { 0 , 1 } i ∈ I (1d) 

d ≥ 0 . (1e) 

The objective (1a) maximizes the minimum distance d , and ex- 

actly p candidate locations are opened because of (1b) . The non- 

linear constraints (1c) impose that any two locations i and j are 

only opened simultaneously ( x i x j = 1 ) if their distance d ij is at 

least d . The variable domains are given by (1d) and (1e) . 

The next PDP formulation utilizes the relationship between PDP 

and the maximum cardinality independent set problem in sub- 

graphs (I, ̃  E ) of the graph ( I , E ), which can be stated as follows: 

max 
∑ 

i ∈ I 
x i (2a) 

s.t. x i + x j ≤ 1 (i, j) ∈ 

˜ E ⊆ E (2b) 

x i ∈ { 0 , 1 } i ∈ I. (2c) 

A vector x ∈ {0, 1} I satisfying constraints (2b) is the incidence 

vector of a subset S ⊆I that contains pairwise non-adjacent nodes 

in the graph (I, ̃  E ) , i.e., x i = x j = 1 only if (i, j) / ∈ 

˜ E . We refer to S 

as an independent set (IDS) of the graph (I, ̃  E ) . 

For a given value of d , the set of feasible solutions to PDP with 

minimum distance at least d is given by 

X (d) 

= 

{ 

x ∈ { 0 , 1 } I : ∑ 

i ∈ I 
x i = p and x i + x j ≤ 1 ∀ (i, j) ∈ E(d) 

} 

. 

A vector x ∈ X (d) is the incidence vector of an IDS of size p in the 

graph ( I , E ( d )). This notation allows us to state the PDP in the form 

Z = max d (3a) 

s.t. X (d) � = ∅ (3b) 

d ≥ 0 . (3c) 

The minimum distance d is maximized in (3a) , while con- 

straint (3b) states that a feasible choice of d has to ensure that 

an IDS of size p exists in ( I , E ( d )). We refer to the problem of 

deciding whether X (d) is non-empty for any d as the IDS prob- 

lem. Erkut (1990) proposed another non-linear formulation similar 

to (3) . Neither of the above non-linear formulations was supposed 

to be solved directly. The authors motivate the two subsequent 

categories of exact solution approaches to the PDP which can be 

found in the literature. 

MILP-based approaches. These approaches are driven by compact 

linearized versions of model (1) . We describe a standard MILP 

formulation of the PDP in Section 2.2 . Some authors suggest to 

solve the compact model straightaway using any off-the-shelf MILP 

solver ( Daskin, 1995; Kuby, 1987 ). Erkut (1990) tailored a branch- 

and-bound algorithm for the PDP. 

Search procedures. Model (3) motivates a simple search algorithm, 

e.g., line or binary search, to find a largest minimum distance 

in combination with an efficient method to perform the feasibil- 

ity tests in each iteration of the search. For a continuous ver- 

sion of the PDP defined on a tree, Chandrasekaran and Daughety 

(1981) propose a search procedure which requires consecutive so- 

lutions of anti-cover problems. The anti-cover problem ( Chaudhry, 

McCormick, & Moon, 1986 ) and the d -separation problem ( Erkut, 

1990; Erkut, ReVelle, & Ülküsal, 1996 ) are synonyms for the max- 

imum IDS problem. Pisinger (2006) suggests a binary search and 

considers cliques of size p for the feasibility test. 

We position the contribution of this paper in the first cate- 

gory because a new compact formulation for the PDP is presented 

(see Section 2.3 ). Along with the new formulation, we provide in 

Section 2.3.2 a greedy but usually effective procedure to strengthen 

its linear relaxation by separating valid inequalities. In our compu- 

tational tests, we benchmark the new formulation against the stan- 

dard MILP formulation and against the search procedures known 

from the literature. 

2.2. Kuby formulation 

Using an appropriately large number M , a linearization 

of (1) suggested by Kuby (1987) can be written as 

Z = max d (4a) 

s.t. 
∑ 

i ∈ I 
x i = p (4b) 

d ≤ M(2 − x i − x j ) + d i j (i, j) ∈ E (4c) 

x i ∈ { 0 , 1 } i ∈ I (4d) 

d ≥ 0 . (4e) 
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