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a b s t r a c t 

We consider multi-server tandem queues where both stations have a finite buffer and all services times 

are phase-type distributed. Arriving customers enter the first queueing station if buffer space is avail- 

able or get lost otherwise. After completing service in the first station customers proceed to the second 

station if buffer space is available, otherwise a server at the first station is blocked until buffer space 

becomes available at the second station. We provide an exact computational analysis of various steady- 

state performance measures such as loss and blocking probabilities, expectations and higher moments 

of numbers of customers in the queues and in the whole system by modeling the tandem queue as a 

level-dependent quasi-birth-and-death process and applying suitable matrix-analytic methods. Numerical 

results are presented for selected representative examples. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Tandem queueing networks, in short: tandem queues, are 

widely used to model systems and scenarios where services are 

delivered in successive stages, that is generic customers enter a 

multi-stage service facility and successively proceed through the 

service stages. This applies to such diverse fields as manufactur- 

ing, transportation, logistics, computer networking, telecommuni- 

cations, and many daily-life service operations, amongst others. 

Consider for example production lines where different steps are 

processed by different machines, airplane maintenance and refu- 

eling, ordering and delivery of goods or services, the Internet or 

other communication networks where messages or data packets 

are routed from a source to a destination via multiple hops, or su- 

permarkets where the first stage is the self service of customers 

collecting their items and the second stage is the payment at the 

check out. 

Queueing theory has extensively dealt with tandem queues 

for more than five decades. However, standard assumptions of 

‘classical’ queueing theory, especially Poisson arrival processes and 

independent exponentially distributed service times, do not ap- 

propriately reflect the traffic characteristics, service or processing 

times in many modern applications. Service times are often not 
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exponentially distributed and interarrival times are often neither 

independent, identically distributed nor exponentially distributed. 

Thus, the arrival process is not even a renewal process. Therefore, 

we consider phase-type distributed service times and Markovian 

arrival processes. 

Phase-type (PH) distributions Neuts (1981) , O’Cinneide 

(1990) are extensions of the exponential distribution with the 

particularly nice property that any probability distribution on 

the nonnegative real numbers can be approximated, in principle 

arbitrarily accurately, by a PH distribution. Markovian arrival pro- 

cesses (MAPs) Neuts (1979) , Lucantoni, Meier-Hellstern, and Neuts 

(1990) can properly incorporate correlations between successive 

interarrival times. They include Poisson processes, PH renewal 

processes, interrupted and Markov modulated Poisson processes 

as special cases and the whole class of MAPs is dense within the 

class of marked point processes Asmussen and Koole (1993) . For 

monographs with a special focus on PH distributions and MAPs we 

refer to Breuer and Baum (2005) and Buchholz, Kriege, and Felko 

(2014) , where the latter also addresses how data can be fitted to 

PH distributions and MAPs, respectively. 

PH distributions and MAPs provide versatile means of model- 

ing at the cost of a significantly increased complexity in that the 

state space of the associated Markov chain model becomes ex- 

tremely huge. In particular, using PH distributed service times in 

multi-server models considerably increases the dimension of the 

state space. This curse of dimensionality poses a great challenge 

on model analysis, which is often tackled via approximations. For 

instance, Brandwajn and Begin (2014) have recently approached 
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the seemingly simple case of a multi-server queue with Poisson 

arrivals, PH distributed service times, and finite buffer by using a 

reduced state description in which the state of only one server is 

represented explicitly, while the other servers are accounted for 

through their rate of completions. In fact, queueing models with 

both MAP and PH distributed service times, even for single sta- 

tion single-server queues, are typically analyzed by approxima- 

tions using state space reduction approaches and/or sophisticated 

matrix-analytic methods. Different variants of single-server queues 

with MAP and PH distributed service times have been studied in, 

e.g., Artalejo and Chakravarthy (2006) , Krishnamoorthy, Babu, and 

Narayanan (2009) , Sreenivasan, Chakravarthy, and Krishnamoorthy 

(2013) . Multi-server queues with MAP and PH distributed service 

times are addressed in Chakravarthy (2013) where the MAP/PH/c 

retrial queue with PH distributed retrials is studied via simu- 

lation, and in Kim, Dudin, Taramin, and Baek (2013b) where a 

MAP/PH/c/c+K queue with two customer classes is analyzed by 

combining specific state space reduction techniques for queues 

with PH distributed service times and matrix-analytic methods. 

Only relatively few works have investigated tandem queues 

with MAP and PH distributed service times. Gomez-Corral 

(2002) analyzes a tandem queue with MAP and two single-server 

stations, infinite buffer at the first station and no buffer at the sec- 

ond station. Service times at the first station are PH distributed and 

the service times at the second station are general. Van Houdt and 

Alfa (2005) consider a (discrete-time) tandem queue with MAP and 

two single-server stations where the service times at both stations 

are PH distributed, the queue at the first station is infinite and the 

queue at the second station is finite. Lian and Liu (2008) deal with 

a tandem queue with MAP, two single-server stations with queues 

of infinite capacity and exponentially distributed service times at 

both stations. Baumann and Sandmann (2013) consider a tandem 

queue with MAP, two single-server stations with queues of infinite 

capacity and PH distributed service times at both stations where 

customers may leave the system after completing service at the 

first station. Kim, Dudin, Dudin, and Dudina (2013a) model a call 

center as a tandem queue with MAP, multiple servers at both sta- 

tions, exponentially distributed service times and no buffer at the 

first station, PH distributed service times and a finite buffer at the 

second station. Kim, Dudin, Dudina, and Dudin (2014) investigate 

a tandem queue with two types of customers, marked MAP, multi- 

ple servers at both stations, exponentially distributed service times 

and no buffer at the first station, PH distributed service times, one 

finite buffer and one infinite buffer at the second station. 

In this paper, we consider tandem queues with MAP, two multi- 

server stations with finite buffers and PH distributed service times 

at both stations where at the first station losses of arriving cus- 

tomers and blocking after service can occur. We compute steady- 

state performance measures without introducing any approxima- 

tion. For this purpose we model the class of tandem queues under 

consideration by level-dependent quasi-birth-and death (LDQBD) 

processes and use a matrix-analytic method according to Baumann 

and Sandmann (2013) for obtaining the desired steady-state perfor- 

mance measures without explicitly computing the stationary dis- 

tribution. In the next section, we formally introduce the class of 

tandem queues considered, in particular we give general formal 

descriptions of the arrival process and the service time distribu- 

tions. In Section 3 we describe the modeling of this class of tan- 

dem queues as LDQBD processes, where we introduce the structur- 

ing of the multi-dimensional state space as well as the state transi- 

tions and transition rates. Subsequently, in Section 4 we show how 

to express relevant performance measures and in Section 5 we 

present a matrix-analytic algorithm for the efficient computation 

of these performance measures. Numerical results for specific tan- 

dem queues of the considered type are presented in Section 6 . 

In particular, for certain choices of the arrival process, the ser- 

vice time distributions and varying parameter values we study the 

loss and blocking probabilities as well as the expected numbers of 

customers in the two stations of the tandem queueing network. 

Section 7 concludes the paper and outlines further research direc- 

tions. 

2. Tandem queue specification 

The class of the tandem queue we investigate can be specified 

in Kendall notation by MAP/PH/ c 1 /c 1 + K 1 → / PH/ c 2 /c 2 + K 2 . The 

first station consists of c 1 identical servers and a buffer of finite 

capacity K 1 . The second station consists of c 2 identical servers and 

a buffer of finite capacity K 2 . Customers arrive at the first queue- 

ing station. If upon arrival the buffer is fully occupied, then the 

customer is lost. Customers having completed service in the first 

station proceed to the second station. If upon service completion 

in the first station the buffer at the second station is fully occu- 

pied, then the customer blocks a server at the first station until 

buffer space becomes available at the second station. 

The service times at both stations are PH distributed. A prob- 

ability distribution on R + = [0 , ∞ ) is a (continuous) PH distribu- 

tion, iff it is the distribution of the time until absorption in a fi- 

nite time-homogeneous continuous-time Markov chain (CTMC). For 

such a CTMC with state space { 1 , . . . , n + 1 } and initial distribution 

˜ α = (α1 , . . . , αn +1 ) , where the states 1 , . . . , n are transient and the 

state n + 1 is absorbing, the generator matrix A has the form 

A = 

(
B b 

0 0 

)
, B ∈ R 

n ×n , b ∈ R 

n (1) 

and (α1 , . . . , αn , B ) is a representation of the PH distribution, in 

short PH( α, B ), with α = (α1 , . . . , αn ) . The number n of transient 

states is called the order of the PH distribution or the number of 

phases. In our model we denote the service time distributions at 

the first and the second station by PH( σ , S ) and PH( τ , T ), respec- 

tively, where PH( σ , S ) is of order V and PH( τ , T ) is of order W . 

Hence, S = (s i j ) 
V 
i, j=1 

and T = (t i j ) 
W 

i, j=1 
. Besides, we define the vec- 

tors s := −S 1 and t := −T 1 . The moments of a PH( α, B ) distributed 

random variable Z are given by E [ Z k ] = k ! α(−B ) −k 1 . Hence, the 

expected service times in our model are −σ S −1 1 at the first sta- 

tion and −τT −1 1 at the second station. 

The arrival process is a continuous-time MAP of order U de- 

termined by the pair of ( U × U )-matrices ( D 0 , D 1 ) where D 0 = 

(νi j ) 
U 
i, j=1 

, D 1 = (λi j ) 
U 
i, j=1 

with ν ij ≥ 0 for i � = j, ν ij < 0 for i = 

j, λij ≥ 0 for all i, j ∈ { 1 , 2 . . . , U} , D 1 � = 0 , and D 0 1 + D 1 1 = 0 

such that D = D 0 + D 1 is the generator matrix of an irreducible 

CTMC on the state space { 1 , 2 , . . . , U} . This CTMC is commonly 

referred to as environmental process, phase process, or back- 

ground CTMC. When it changes its state from state i to state 

j � = i, with probability λi j / (νi j + λi j ) it triggers an arrival and 

with probability νi j / (νi j + λi j ) it does not. The average arrival 

rate of the MAP is given by λ = ψD 1 1 where ψ denotes the 

stationary distribution of the environmental process, i.e. ψD = 

0 , ψ1 = 1 . The stationary moments of the interarrival time Y are 

E [ Y k ] = k ! λ−1 ψ(−D 0 ) 
1 −k 1 . In particular, E [ Y ] = λ−1 , and Var [ Y ] = 

(2 λψ(−D 0 ) 
−1 1 − 1) /λ2 , from which we get the squared coefficient 

of variation c 2 = 2 λψ(−D 0 ) 
−1 1 − 1 . The squared coefficient of cor- 

relation is given by γ = (λψ(−D 0 ) 
−1 D 1 D 

−1 
0 

1 − 1) /c 2 . 

3. Markov chain model 

We model the tandem queue as a CTMC (X(t)) t≥0 = 

(X 1 (t) , . . . , X V + W +6 (t)) t≥0 whose states are integer-valued vectors 

of the form 

( n 1 , n 2 , u, v 0 , v 1 , . . . , v V , v V +1 , w 0 , w 1 , . . . , w W 

) 

where 
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