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a b s t r a c t 

In this paper, we study the regenerator location problem (RLP). This problem arises in optical networks 

where an optical signal can only travel a certain maximum distance (called the optical reach) before its 

quality deteriorates, needing regenerations by regenerators deployed at network nodes. The RLP is to 

determine a minimal number of network nodes for regenerator placement, such that for each node pair, 

there exists a path of which no sub-path without internal regenerators has a length greater than the 

optical reach. Starting with a set covering formulation involving an exponential number of constraints, 

reported and studied in Rahman (2012) and Aneja (2012), we study the facial structure of the polytope 

arising from this formulation, significantly extending known results. Making use of these polyhedral 

results, we present a new branch-and-cut (B&C) solution approach to solve the RLP to optimality. We 

present a series of computational experiments to evaluate two versions of the proposed B&C approach. 

Over 400 benchmark RLP instances, we first compare them with an available exact method for the RLP 

in the literature. Because of the equivalence among the RLP, the minimum connected dominating set 

problem (MCDSP), and the maximum leaf spanning tree problem (MLSTP), we further compare our 

approaches with other available exact algorithms using 47 benchmark MCDSP/MLSTP instances. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In all-optical networks , optical-bypass is used to carry the 

traffic from a source s to a destination t entirely in the optical 

domain so that no Optical-Electrical-Optical (O/E/O) is required 

in the intermediate nodes of the path between s and t . Since 

the optical reach (the maximum distance an optical signal can 

travel before its quality deteriorates to a level that necessitates 

regeneration), ranges from 500 to 20 0 0 miles ( Simmons, 20 06 ), 

regeneration of optical signals is essential to establish lightpaths 

of length greater than the optical reach. In practice, the 3R signal 

regeneration process is used to re-amplify, reshape and re-time 

the signal for wide-area backbone networks. Such regenerators 

are rather expensive equipment (e.g., $160K, see Mertzios, Sau, 

Shalom, & Zaks (2012) ), and much research has been conducted, 

concerning minimizing their usage while satisfying all or most of 

the communication requirements posed by the clients. The cost of 

regenerators in a network is measured in two main ways: (1) the 

number of regenerators placed in the network, and (2) the number 
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of locations in which regenerators are placed ( Hartstein, Shalom, 

& Zaks, 2013 ). The second measure is the one that has been used 

in most of the research on the regenerator location problem (RLP) 

( Chen, Ljubi ́c, & Raghavan, 2010; Pedrola et al., 2013; Sen, Murthy, 

& Bandyopadhyay, 2008; Yetginer & Karasan, 2003 ). The RLP deals 

with a constraint on the geographical extent of signal transmission 

in the optical network design. Fig. 1 presents an example of the 

RLP. In this six-node network, the optical reach is d max = 200 for 

the signal travel. For this instance, the optimal solution is to place 

one regenerator at node 4. With this regenerator placement, each 

node pair can communicate with each other. 

In this paper, we focus on the RLP that can be defined as fol- 

lows. 

Definition 1. Given an optical network and the optical reach d max , 

the RLP is to determine the minimum number of network nodes 

for regenerator placement, such that for each node pair, there ex- 

ists a path of which no sub-path without internal regenerators has 

a length greater than the optical reach d max . 

Given an undirected graph G = (V, E) , a subset D ⊆ V is a domi- 

nating set if every vertex v ∈ V \ D is joined to at least one member 

of D by an edge in E . A connected dominating set is a dominat- 

ing set D such that the subgraph G (D ) = (D, E(D )) is connected, 
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Fig. 1. Example of the RLP. 

where E ( D ) is the set of edges of E with both ends in D ( Buchanan, 

Sung, Boginski, & Butenko, 2014 ). The minimum connected domi- 

nating set problem (MCDSP) consists of finding a connected domi- 

nating set of minimum cardinality. The MCDSP is N P -hard since 

the problem of finding a minimal cardinality dominating set is 

known to be N P -hard ( Garey & Johnson, 1979 ). It is easy to see, 

as observed in Gendron, Lucena, Cunha, and Simonetti (2014) and 

Lucena, Maculan, and Simonetti (2010) , that the MCDSP is equiva- 

lent to the maximum leaf spanning tree problem (MLSTP), which 

consists of finding a spanning tree of G with maximum number 

of leaf nodes. It was shown in Sen et al. (2008) that the RLP is 

equivalent to the MCDSP, and is hence N P -hard. Hartstein et al. 

(2013) examined the parameterized complexity of the RLP and 

presented several fixed parameter tractability results and polyno- 

mial algorithms for fixed parameter values, as well as several N P - 

hardness results. 

Since the RLP, MCDSP and MLSTP are equivalent, solution ap- 

proaches for any one of these problems can be used for the other 

two problems as well. 

Fujie (2004) presented two binary integer programming “non- 

compact” formulations for the MLSTP — an “edge-vertex” formu- 

lation with | E| + | V | binary variables, and a “vertex” formulation 

with only | V | binary variables, and studied the facial structure of 

each of these two polytopes obtained by taking the convex hull 

of feasible solutions of these formulations. However, no separa- 

tion algorithm or computational experiments were presented in 

the paper. Many practical applications of the MLSTP/MCDSP (equiv- 

alent to the RLP) are discussed in Lucena et al. (2010) and Gendron 

et al. (2014) . Since the problem is N P -hard, researchers have stud- 

ied exact algorithms ( Chen et al., 2010; Fan & Watson, 2012; Fujie, 

2003; Gendron et al., 2014; Lucena et al., 2010; Simonetti, Salles da 

Cunha, & Lucena, 2011 ), heuristics ( Chen et al., 2010; Duarte, Martí, 

Resende, & Silva, 2014; Lucena et al., 2010; Sen et al., 2008; Yue, 

Li, Wei, & Lin, 2014 ), and approximation algorithms ( Flammini, 

Marchetti-Spaccamela, Monaco, Moscardelli, & Zaks, 2011; Guha & 

Khuller, 1998 ) for solving these problems. 

Given that the investigation focus of this paper is on develop- 

ing an exact algorithm, we here review works only regarding ex- 

act algorithms for the problem. For updated progress of heuristics, 

please refer to Duarte et al. (2014) and Gendron et al. (2014) . 

Fujie (2003) , based on the “edge-vertex” formulation of the 

MLSTP discussed in Fujie (2004) , presented a branch-and-bound 

(B&B) algorithm for the problem and reported results of some 

computational experiments. Lucena et al. (2010) studied two 

binary integer programming formulations of the MLSTP. The first 

formulation significantly enhanced the “edge-vertex” formulation 

of Fujie (2003) by adding some valid inequalities and some facet 

defining inequalities introduced in Fujie (2004) . The second for- 

mulation recast the MLSTP as a Steiner arborescence problem on 

a modified directed graph, and was shown to be computationally 

superior to the one in Fujie (2003) . Chen et al. (2010) studied the 

RLP, formulated it also as a Steiner arborescence problem on a 

modified directed graph with a unit degree constraint on the root 

node, and developed a branch-and-cut (B&C) algorithm. The com- 

putational results in Chen et al. (2010) show that their B&C method 

could optimally solve instances with up to 100 nodes and a few 

20 0- and 30 0-node instances with small network density. Rahman 

(2012) , and Rahman, Bandyopadhyay, and Aneja (2015) also stud- 

ied a set covering formulation, which is equivalent to the “vertex”

formulation discussed in Fujie (2004) . With this formulation, the 

authors presented a computational study using a preliminary B&C 

approach (no comparison was made with any other approach). 

Simonetti et al. (2011) considered the MCDSP and presented 

a binary integer programming formulation, using | V | + | E| binary 

variables, that embedded two structures: one corresponding to the 

tree polytope for the dominating set of nodes containing the gen- 

eralized subtour elimination constraints (GSEC), and the other in- 

volving the covering constraints corresponding to each node being 

connected to at least one of the nodes in the dominating set. The 

authors further strengthened their formulation by lifting both cov- 

ering constraints and GSEC constraints. Another set of valid cut- 

inequalities were derived by observing that whenever S and V \ S 
are non-dominating set of nodes, at least one edge across the 

cut ( S , V \ S ) must be chosen in the solution tree. Fan and Watson 

(2012) presented compact formulations for the MCDSP and solved 

these formulations using CPLEX 12.1. Fernau et al. (2011) devel- 

oped an exact approach, which can solve the MCDSP in O (1.8966 n ) 

time, but did not present computational results. Gendron et al. 

(2014) investigated further the branch-and-cut algorithm devel- 

oped by Simonetti et al. (2011) , and presented a Benders decompo- 

sition algorithm, a branch-and-cut method and a hybrid algorithm 

combining these two algorithms. The Benders decomposition ap- 

proach was applied to a formulation involving only | V | binary vari- 

ables that contained covering constraints as described in Simonetti 

et al. (2011) , and a generic set of constraints imposing connected- 

ness on the selected dominating set. The branch-and-cut algorithm 

developed in Gendron et al. (2014) was based on strengthening fur- 

ther the formulation in Simonetti et al. (2011) by generalizing the 

cut-inequalities in Simonetti et al. (2011) . Based on 47 benchmark 

MCDSP/MLSTP instances, Gendron et al. (2014) tested two variants 

of each of the above three approaches, Benders, B&C and hybrid: a 

stand-alone version and an iterative probing variant. The computa- 

tional results showed that the methods in Gendron et al. (2014) are 

the current best exact approaches for the MCDSP/MLSTP and RLP. 

Additionally, Guha and Khuller (1998) provided approximation 

algorithms for the MCDSP while Flammini et al. (2011) focused 

on theoretical analysis of regenerator placement, presenting exact 

algorithms, N P -hardness results, approximation algorithms and 

hardness of approximation results for various extensions of the 

RLP. Mertzios et al. (2012) studied a special case of the RLP in 

which k possible traffic patterns are given and the objective is 

to place the minimum number of regenerators satisfying each of 

these patterns. The authors proposed a constant-factor approxima- 

tion algorithm with ratio ln (w · k ) , where w is the maximum al- 

lowed number of hops for any lightpath. Additionally, Mertzios, 

Shalom, Wong, and Zaks (2011) and Shalom, Voloshin, Wong, Yung, 

and Zaks (2012) studied the regenerator placement in an online 

setting. 

In the computer science and network traffic literature, re- 

searchers also studied some problems related to the RLP. Yang 

and Ramamurthy (2005b) and Pachnicke, Paschenda, and Krumm- 

rich (2008) considered the problem of regenerating lightpaths in 

conjunction with the one of satisfying the greatest possible num- 

ber of communication requests, given a limited number of wave- 

lengths. Sriram, Griffith, Su, and Golmie (2004) dealt with regen- 

erators with slight different capabilities. Yang and Ramamurthy 

(2005a) studied the wavelength routing under sparse regenera- 

tion in translucent optical networks. Gouveia, Patrício, De Sousa, 

and Valadas (2003) addressed a multi-protocol label switching 

(MPLS) over wave division multiplexing (WDM) network design 
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