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a b s t r a c t 

We develop an analytical real-option solution to the after-tax optimal timing boundary for a replaceable 

asset whose operating cost and salvage value deteriorate stochastically. We construct a general replace- 

ment model, from which seven other particular models can be derived, along with deterministic versions. 

We show that the presence of salvage value and tax depreciation significantly lowers the operating cost 

threshold that justifies (and thus hastens) replacement. Although operating cost volatility increases defer 

replacement, increases in the salvage value volatility hasten replacement, albeit modestly, while increases 

in the correlation between costs and salvage value defer replacement. Reducing the tax rate or depreci- 

ation lifetime, or allowing an investment tax credit, yield mixed results. These results are also compared 

with those of less complete models, and deterministic versions, showing that failure to consider several 

stochastic variables and taxation in the replacement process may lead to sub-optimal decisions. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

For assets with a significant second-hand market value, such as 

vehicles, earth moving equipment and aircraft, or a notable scrap 

value such as ships, salvage value may be a crucial ingredient to 

the replacement decision because of the cash flow implications. 

The analytical solution to the after-tax optimal timing boundary is 

developed for a replaceable asset characterized by a deteriorating 

and stochastic operating cost and salvage value. Since, at replace- 

ment, the after-tax salvage value for the incumbent plus any resid- 

ual depreciation tax credits partly offset the re-investment cost, 

the replacement policy reflects the after-tax trade-off between the 

sacrificed value of the incumbent and the net benefits rendered by 

the succeeding asset. 

From simulations on a deterministic model, Robichek and Van 

Horne (1967) show that abandonment can significantly raise the 

project value because of the flexibility value embedded in the re- 

leased funds. Enhancements are made by Dyl and Long (1969) by 

introducing a timing option, and by Gaumitz and Emery (1980) and 

Howe and McCabe (1983) . In a stochastic dynamic programming 
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formulation, Bonini (1977) models a stochastic operating cost and 

salvage value, explicitly. 

There are various empirical studies of the parameter values 

used for replacement models. Rust (1987) derives the drifts of op- 

erating costs (including maintenance) from actual records, which 

are a deterministic function of time/age. Lai, Leung, Tao, and 

Wang (20 0 0) fit various lifetime distributions (including normal) 

to maintenance records, but do not calibrate uncertainty. Keles and 

Hartman (2004) quantify operating costs, salvage value and invest- 

ment costs discounted to time zero for bus fleets. Kulp and Hart- 

man (2011) study different depreciation methods, but do not con- 

sider salvage value. Liu, Wu, and Xie (2015) consider failure inter- 

action for free-replacement warranties, van de Heijden and Iskan- 

dar (2013) evaluate spare parts storage as an alternative to replace- 

ment with higher priced versions in warranties, and Shafiee and 

Chukova (2013) suggest for future research modeling reliability im- 

provements as random variables. In a review of literature, Hartman 

and Tan (2014) note that there only a few models which consider 

stochastic deterioration in continuous-time. 

We observe that most real-option models which allow for 

stochastic variables, treat abandonment only implicitly. Salvage 

value and depreciation are interpreted by Mauer and Ott (1995) as 

functions of a stochastic operating cost as a way of reducing di- 

mensionality to one, while Dobbs (2004) embeds the salvage value 

into a one-factor model. Ye (1990) allows combined maintenance 

and operating cost to follow an arithmetic Brownian motion, 

http://dx.doi.org/10.1016/j.ejor.2016.07.006 

0377-2217/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: R. Adkins, D. Paxson, Replacement decisions with multiple stochastic values and depreciation, European Journal 

of Operational Research (2016), http://dx.doi.org/10.1016/j.ejor.2016.07.006 

http://dx.doi.org/10.1016/j.ejor.2016.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:r.adkins@bradford.ac.uk
mailto:dean.paxson@mbs.ac.uk
http://dx.doi.org/10.1016/j.ejor.2016.07.006
http://dx.doi.org/10.1016/j.ejor.2016.07.006


2 R. Adkins, D. Paxson / European Journal of Operational Research 0 0 0 (2016) 1–11 

ARTICLE IN PRESS 

JID: EOR [m5G; August 11, 2016;20:34 ] 

with a fixed investment cost, no salvage value or depreciation. 

Yilmaz (2001) considers revenue produced by equipment to be 

stochastic, but maintenance to fix any equipment faults is de- 

terministic. Richardson, Kefford, and Hodkiewicz (2013) allow 

for time-to-build for a one factor replacement model. These 

simplifications yield an analytical solution, but any trade-offs or 

co-variation amongst the factors is entirely ignored. 

A tractable solution for dealing with the two-stochastic-factor 

replacement model is developed by Adkins and Paxson (2011) that 

excludes depreciation and salvage value. Zambujal-Oliveira and 

Duque (2011) propose a two-factor model with stochastic operat- 

ing cost and (autonomous) stochastic salvage value, with depre- 

ciation following a negative exponential function. Reindorp and 

Fu (2011) consider two stochastic factors (market price and prof- 

itability, which are uncorrelated) with investment cost a func- 

tion of these two factors with no salvage (or demolition) value. 

Two-factor models are proposed by Adkins and Paxson (2013a,b) , 

who consider the effect of three alternative depreciation sched- 

ules and technological progress on the replacement policy, respec- 

tively, but ignore salvage value. Adkins and Paxson (2013c) con- 

sider reversionary revenue and cost levels with technological 

progress, but in a deterministic framework. Ansaripoor, Oliveira, 

and Liret (2014) evaluate two input factors over a low-medium- 

high range in determining reacting to new equipment innovations. 

Chronopoulous and Siddiqui (2015) model different reactions to 

technological innovation under uncertainty, but ignore taxes and 

salvage values. 

In this paper, we formulate a three-factor real-option replace- 

ment model, based on operating cost, salvage value and deprecia- 

tion, to investigate the effect on the replacement policy not only 

from including salvage value as a factor but also from their in- 

teractions. The merit of our approach is the ease in determining 

solutions without engaging in onerous, less transparent numerical 

methods such as Monte-Carlo or finite-differences. Since the solu- 

tion to the replacement timing-boundary is quasi-analytical, it also 

solves the one- and two-factor derivative models. 

Both salvage value and depreciation matter in replacements, 

which is intuitive, but expected operating cost and salvage value 

volatilities and correlation also matter, not considered in determin- 

istic models. Our general model encompasses several other models, 

and enables easy comparisons of the results of different models. 

The number of possible replacements matters a lot, extending the 

approximate replacement timing from 25 (multiple) to 38 (single) 

years for our base case parameter values given certain assump- 

tions. 

The rest of the paper is organized as follows. In Section 2 , we 

develop a quasi-analytical method for identifying the after-tax op- 

timal timing boundary for the three-factor replacement model. Nu- 

merical illustrations provided in Section 3 reveal significant fea- 

tures of the model, which are extended through a sensitivity anal- 

ysis in Section 4 . Section 5 concludes and offers some suggestions 

for further research. 

2. Replacement opportunity with salvage and tax depreciation 

2.1. Valuation function 

We determine the real-option replacement policy for a durable 

productive asset, subject to input decay in a seemingly monopo- 

listic situation whose output yields a constant revenue 1 , assuming 

other flexibilities are inadmissible. Holding the asset remains opti- 

mal until, on an after-tax basis, the expected benefit of acquiring a 

1 It is straightforward to recast the model in terms of net revenue instead of op- 

erating costs. 

successor net of replacement cost less any disposal value exceeds 

that from operating the incumbent. The relevant cash flows crucial 

to the replacement decision are those associated with the oper- 

ating costs, the depreciation charge and the salvage value. While 

annual operating cost and salvage value, denoted by C and S, re- 

spectively, are treated as stochastic factors, the annual depreciation 

charge, denoted by D , is a deterministic factor. The replacement 

policy, represented by an optimal timing boundary separating the 

decision regions of continuance and replacement, is defined over a 

three-dimensional cost-salvage-depreciation (C-S-D) space. The tax 

rate τ is applicable to all cash flows (except for the investment 

cost), both positive and negative, and regardless of whether they 

represent income or capital gains. At replacement, the operating 

cost, salvage value and depreciation level for the newly installed 

succeeding asset are set to their known initial levels of C I , S I and 

D I , respectively. The replacement re-investment cost is a known 

constant K. To avoid round-tripping, S I < K. Asset re-investment is 

treated here as partly irreversible, since the firm recovers only a 

fraction of the original outlay if the asset is disposed at S. We as- 

sume that the revenue produced by the asset remains at a con- 

stant known level, with the restriction that it exceeds operating 

cost, thus insuring sufficient taxable income. 

The two uncertain factors are assumed to follow distinct geo- 

metric Brownian motion processes with drift. For X ∈ { C, S } : 
d X = αX X d t + σX X d z X , (1) 

where αX is the instantaneous drift rate, σX the instantaneous 

volatility rate, and d z X is the increment of the standard Wiener 

process. Dependence between the two factors is described by 

the instantaneous covariance term ρσC σS , Cov [ d C, d S ] = ρσC σS CSd t

with | ρ| ≤ 1 . As the asset efficiency deteriorates with usage and 

age, we assume that the expected operating cost change αC is 

positive, measured as an annualized continuous rate; correspond- 

ingly, its salvage value declines with an expected change rate of 

αS ≤, ≥ 0 , depending on the salvage value characteristics. In con- 

trast to previous formulations, salvage value is not directly tied 

to the revenue and/or operating cost of the asset, since different 

second-hand buyers in different countries may have little concern 

with the revenue or operating costs of the previous owner, and 

often salvage value reflects scrap value like in ships, rather than 

current use value. 

The selected tax depreciation schedule is declining-balance, 

mainly because of its tractability 2 . This and alternative schedule 

forms are considered in a replacement setting by Adkins and Pax- 

son (2013a) . The depreciation level is described by the determinis- 

tic geometric process 

d D = −θD D d t, (2) 

where 0 < θD < 1 is a known constant proportional depreciation 

rate. Being time dependent, the time elapsed since the last replace- 

ment, or the age of the incumbent, can be deduced directly from 

the value of D . The principal difference between the evolutionary 

forms of C and S compared with D is the absence of the volatil- 

ity term in ( 2 ). If the re-investment cost K is fully depreciable for 

tax purposes 3 , then D I = θD K. The after-tax capital gain/loss on dis- 

posal (S − τ (S − D/ θD )) is the gain/loss on S less the accumulated 

depreciation. 

The asset value together with its embedded replacement op- 

tion depends on the prevailing factor levels and is denoted by 

2 The MACRS (GDS) schedule in the U.S. is a declining-balance method until it 

is more beneficial to switch to straight line (when the asset is older, and may be 

considered for replacement). It is feasible (but complicated) to model alternative 

tax depreciation schedules such as straight-line and sum-of-years-digits. 
3 This assumes there is no bonus or special depreciation, or investment tax credit, 

or requirement to estimate a residual salvage value (especially since that is stochas- 

tic), which could reduce the depreciation base. 
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