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a b s t r a c t 

Systems of Systems (SoS) are collections of non-homogeneous, independent systems that interact to pro- 

vide services. These systems can opportunistically share data during contacts that arise whenever two 

entities are close enough to each other. It is assumed in this paper that all contacts can be reliably pre- 

dicted, i.e. the mobility of every system can be reliably estimated. A datum is split into several identified 

datum units to be delivered to a subset of recipient systems. During a contact, a given emitting system 

can transmit to a given receiving system one of the datum units that it possesses. The dissemination 

problem consists in finding a transfer plan which enables all the datum units to be transmitted from 

the sources (the systems that possess datum units from the beginning) to all the recipient systems. In 

this paper, we propose dominance-rule-based techniques for solving the data dissemination problem. In 

particular, we describe preprocessing procedures and some integer-linear-programming formulations to 

solve the problem. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Systems of systems (or SoS) have been defined in many ways. 

One practical definition is that systems of systems are “supersys- 

tems ” comprising other elements that are themselves complex, in- 

dependent operational systems, all interacting to achieve a com- 

mon goal ( Jamshidi, 2008 ). If subsystems are not permanently con- 

nected, they must opportunistically make use of contacts that arise 

when entities are close enough to each other. These exchanges en- 

able them to collaborate and route information from a subset of 

sources to a subset of recipient systems. This collaboration may 

be necessary, for instance, when contact durations are relatively 

short with respect to the volume of information to be dissem- 

inated. Here the information needs to be split up and possibly 

routed through non-recipient messenger systems whose role is to 

carry and forward data. Existing works have already looked at this 

kind of environment, in both opportunistic ( Belblidia, De Amorim, 

Costa, Leguay, & Conan, 2011 ) and delay-tolerant networking ( Fall, 

2003 ). Most of the time, no assumptions are made about the con- 

tacts that occur between the systems, although for many applica- 

tions it is quite possible to make realistic predictions about node 

mobility and contacts. Such applications include satellite networks 

(where the trajectories of subsystems depend on straightforward 
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physics), public transportation systems ( Pentland, Fletcher, & Has- 

son, 2004 ), and fleets of drones. 

The present paper addresses this problem of making use of 

knowledge about possibilities of collaboration ( Hay & Giaccone, 

2009; Merugu, Ammar, & Zegura, 2004 ) when information needs 

to be routed from sources to destinations within a given time hori- 

zon. The fundamental question is which elements of the informa- 

tion should be transferred from which system to which system 

when contacts occur. 

This problem has exercised an increasing number of researchers 

over the last decade. 

Alonso and Fall (2003) , for instance, proposed a linear formu- 

lation for computing a minimum delay transfer plan with respect 

to a set of nodes, a set of contacts and a set of messages. Avail- 

able links need to be assigned to data such that every message 

can travel through the network from its sender to its receiver. The 

formulation incorporates constraints that are to be found in real 

applications, such as transmission delays, propagation delays and 

buffer capacities. As in most of the other works presented be- 

low, data transfers are modeled by unidentified numbers of bytes 

to be transmitted through a dynamic transportation graph. The 

problem can therefore be seen as a dynamic multi-commodity 

flow problem ( Even, Itai, & Shamir, 1976 ) in which messages are 

the commodities and edge capacities are time-varying. The main 

drawback here is that flow constraints implicitly forbid duplica- 

tion of data, making such approaches unsuitable for multicast and 

multisource situations. In the present paper, we instead consider 
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a set N = { 1 , 2 , . . . , q } of q interacting mobile nodes (systems) and 

a single set D = { 1 , 2 , . . . , u } of u identified “datum units”, repre- 

senting unitary, indivisible fragments of data, e.g. each datum unit 

might be a block of pixels corresponding to one high-resolution 

satellite picture. Initially, D (that we will sometimes refer to as 

“the datum”) is distributed over different nodes i ∈ N , the data 

sources, each of which holds a subset O i ⊆ D of datum units. The 

whole datum must then be transmitted within the allotted time to 

the subset R ⊆ N of recipient nodes. The recipient nodes are re- 

quired to obtain all the datum units. To our knowledge, no paper 

has so far addressed the multi-source case, despite its relevance if 

resulting algorithms can be executed on-line, such as when routing 

tables need to be refreshed dynamically following new predictions 

on node mobility or connectivity. 

Alonso’s and Fall’s works were subsequently extended by Jain, 

Fall, and Patra (2004) , who in particular proposed four oracles to 

compare the performances of routing procedures in terms of the 

amount of knowledge of network topology that they require. For 

example, the contacts oracle can answer any question regarding the 

contacts. Computational tests showed as expected that the greater 

the available knowledge, the better the performances. These ora- 

cles were extended by Zhao, Ammar, and Zegura (2005) to take 

multicasting protocols into account ( e.g. the membership oracle an- 

swers questions about group dynamics). In the present paper we 

consider that all the oracles are available. 

In order to address higher-dimensional problems certain as- 

sumptions have been proposed. For example, Handorean, Gill, and 

Roman (2004) defined atomic contacts , where contact durations (as 

opposed to inter-contact durations) are assumed to be instanta- 

neous (both propagation and transmission delays are therefore dis- 

regarded). Hay and Giaccone (2009) made the same assumption, 

and proposed a particularly interesting model that they called the 

event-driven graph . As the graph is time-independent and polyno- 

mial in size with respect to the number of contacts in the instance, 

very basic tools from graph theory can be used to solve numer- 

ous problems straightforwardly. So, for example, the authors solve 

shortest-path or max-flow subproblems to minimize the delay or 

to maximize the network throughput. In the present paper we also 

use the idea of atomic contacts. We define a sequence of contacts 

σ = [ σ1 , σ2 , . . . , σm 

] of m ordered pairs σc ∈ N 

2 of nodes. During a 

contact ( s , r ) ∈ σ , the receiving node r can receive from the send- 

ing node s at most one datum unit k ∈ D that is held in s ’s buffer 

at that time (either from the outset or as a result of previous con- 

tacts). r is assumed to be in possession of k following the contact. 

In the following, s c and r c denote the sending and the receiving 

nodes at each contact σc = (s c , r c ) ∈ σ . Buffers are assumed to be 

infinite and network failures are disregarded. 

The dissemination problem is finding a transfer plan (a routing 

scheme) that minimizes the dissemination length, i.e. the number 

of contacts used to transmit the datum to all the recipient nodes. 

Instances of this problem are defined by one set of nodes N = 

{ 1 , 2 , . . . , q } , one datum D = { 1 , 2 , . . . , u } , q sets O i ⊆ D ( i ∈ N ) cor- 

responding to the datum units possessed by the nodes from the 

outset, one sequence σ of m contacts (s c , r c ) ∈ N 

2 , and one sub- 

set of recipients R ⊆ N . Every instance can be represented with 

an evolving graph ( Ferreira, 2004 ), a time-dependent graph model 

proposed by Ferreira and described in Section 2.1 . The concept of 

transfer plan will also be formulated in Section 2.1 . A transfer plan 

is a solution to the dissemination problem. 

For those who want to go further – we refer to the delay- 

tolerant networking research group The delay-tolerant networking 

research group , Voyiatzis’ survey ( Voyiatzis, 2012 ), and Zhang’s 

survey ( Zhang, 2006 ) for their extensive review of the literature. 

The large number of papers that they reference, reflects a high 

level of interest in the problem of routing in intermittently con- 

nected networks. 

In a previous paper ( Bocquillon, Jouglet, & Carlier, 2015 ), we 

have shown that the dissemination problem is solvable in polyno- 

mial time when there is only one datum unit to be transferred ( i.e. 

u = 1 ), or when there is only one recipient ( i.e. |R| = 1 ). Besides, a 

polynomial time algorithm has been provided for the case where 

the number of datum units and the number of recipients are both 

upper bounded by given constant numbers. The general problem 

is shown to be NP-Hard when the number of recipients and the 

number of datum units are greater than or equal to 2. Therefore, 

in this paper we propose practical procedures to solve the problem 

efficiently. To our knowledge, this is the first time such procedures 

are proposed. 

We are first going to propose a few dominance rules for the 

problem. These yield conditions on which a subset of the search 

space considered to solve the problem can be ignored. Thereafter, 

we will propose algorithms which make use of these rules to de- 

duce additional constraints, and this way, eliminate dominated so- 

lutions (solutions which can be ignored according to the domi- 

nance rules). The algorithms rely on a graph model, the trans- 

fer graph , aiming at capturing knowledge about admissible trans- 

fer plans. Finally, all of this will be tested and incorporated into a 

number of preprocessing procedures. These will aim at strengthen- 

ing an integer linear program modeling the problem. 

The remainder of the paper is organized as follows. In Section 2 , 

we first formalize the notion of transfer plan and then introduce 

dominance rules for the dissemination problem. Sections 3 and 

4 are devoted to algorithms that use dominance rules to detect ir- 

relevant transfer plans. In Section 5 we propose a solving scheme 

that we then discuss and evaluate in Section 6 . 

2. Dominance rules 

The solving techniques discussed in this paper are based on a 

number of dominance rules that dramatically improve the perfor- 

mance of enumeration algorithms (see the paper by Jouglet and 

Carlier (2011) for more details). These dominance rules are defined 

and discussed in this section. The results form the basis for ad- 

ditional constraints and deduction algorithms to be presented in 

the following sections. However, we will first formalize the notion 

of a transfer plan, which provides a means of describing solutions 

to the problem. Let us recall that a transfer plan defines a routing 

scheme, by indicating which units have to be transmitted during 

the different contacts. 

2.1. Transfer plans 

A transfer plan is an application φ : { 1 , 2 , . . . , m } �→ 

{∅ , { 1 } , { 2 } , . . . , { u }} , where φ( c ) indicates the datum unit re- 

ceived by r c during contact σ c ∈ σ . Where φ(c) = ∅ , nothing is 

transferred during contact σ c . Hereinafter, T φ denotes the target 

set {∅ , { 1 } , { 2 } , . . . , { u }} of φ. A transfer plan φ has a corresponding 

set of states O 

t 
i 
⊆ D, defined for each time index t ∈ { 0 , 1 , . . . , m } 

and each node i ∈ N , such that: 

(1) ∀ i ∈ N , O 

0 
i 

= O i , 

(2) ∀ c ∈ { 1 , 2 , ..., m } , O 

c 
r c 

= O 

c−1 
r c 

∪ φ(c) , 

(3) ∀ c ∈ { 1 , 2 , ..., m } , ∀ i ∈ N \{ r c } , O 

c 
i 
= O 

c−1 
i 

Thus, each state O 

t 
i 

contains the datum units obtained by node 

i during the first t contacts of sequence σ (in addition to the 

datum units held from the outset). The transfer plan is valid if 

nodes always send the units that they hold, i.e. ∀ σ c ∈ σ , we have 

φ(c) ∈ {∅} ∪ {{ k } | k ∈ O 

c−1 
s c } . 

A valid transfer plan φ has a delivery length λi ( φ) for each 

node i ∈ N , which corresponds to the smallest contact index t 

after which node i possesses every datum unit k ∈ D, i.e. λi (φ) = 

min { t ∈ { 0 , . . . , m } | O 

t 
i 
= D} . If this index does not exist, then it 
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