
ARTICLE IN PRESS 

JID: EOR [m5G; July 25, 2016;21:40 ] 

European Journal of Operational Research 0 0 0 (2016) 1–12 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Discrete Optimization 

Lower bounds and algorithms for the minimum cardinality bin 

covering problem 

Rico Walter ∗, Alexander Lawrinenko 

Friedrich Schiller University Jena, Chair for Management Science, Carl-Zeiß-Straße 3, D-07743 Jena, Germany 

a r t i c l e i n f o 

Article history: 

Received 13 April 2015 

Accepted 29 June 2016 

Available online xxx 

Keywords: 

Bin covering 

Minimum cardinality 

Lower bounds 

Heuristics 

Branch-and-bound 

a b s t r a c t 

This paper introduces the minimum cardinality bin covering problem where we are given m identical 

bins with capacity C and n indivisible items with integer weights w j ( j = 1 , . . . , n ) . The objective is to 

minimize the number of items packed into the m bins so that the total weight of each bin is at least 

equal to C . We discuss reduction criteria, derive several lower bound arguments and propose construction 

heuristics as well as a powerful subset sum-based improvement algorithm that is even optimal when 

m = 2 . Moreover, we present a tailored branch-and-bound method which is able to solve instances with 

up to 20 bins and several hundreds of items within a reasonable amount of time. In a comprehensive 

computational study on a wide range of randomly generated instances, our algorithmic approach proved 

to be much more effective than a commercial solver. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Problem definition 

In this paper we address the minimum cardinality bin covering 

problem (MCBCP) which consists in determining the least number 

of items necessary to fill (or cover) m bins. More precisely, given 

m ≥ 2 identical bins of capacity C ∈ N and a set J of n indivisible 

items with integer weights w j ∈ N ( j = 1 , . . . , n ) the objective is to 

minimize the number of items packed into the m bins so that the 

total weight of each bin equals at least C . Introducing binary vari- 

ables x ij which take the value 1 if item j is packed into bin i and 0 

otherwise, a straightforward formulation of the MCBCP as an inte- 

ger linear program (ILP) consisting of objective function (1) subject 

to (2) –(4) is provided below. 

Minimize z = 

m ∑ 

i =1 

n ∑ 

j=1 

x i j (1) 

subject to 

n ∑ 

j=1 

w j x i j ≥ C i = 1 , . . . , m (2) 
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m ∑ 

i =1 

x i j ≤ 1 j = 1 , . . . , n (3) 

x i j ∈ { 0 , 1 } i = 1 , . . . , m ; j = 1 , . . . , n (4) 

Objective function (1) minimizes the number of items neces- 

sary to fill all m bins. Constraints (2) ensure that each bin is 

filled and constraints (3) guarantee that each item is assigned to 

at most one bin. Finally, the domains of the binary variables are 

set by (4) . By reduction from 3- Partition (cf. Garey & Johnson, 

1979 ) it is readily verified that MCBCP is N P -hard. Throughout 

the paper, we assume the items to be labeled in such a way that 

w 1 ≥ w 2 ≥ · · · ≥ w n > 0 . Moreover, for economy of notation, we of- 

ten identify items by their index. 

As a possible application of MCBCP, consider the disposal or 

transportation of m different liquids (e.g., chemicals) that cannot 

be mixed. If at least C volume units of each liquid have to be trans- 

ported and we are given n tanks of various sizes, the MCBCP is to 

load the m liquids into the fewest number of tanks. Clearly, the less 

tanks are used the more convenient the handling and the less or- 

ganizational effort. Note that here, the “liquids” correspond to bins 

and the “tanks” (and their sizes) correspond to the items (and their 

weights). For the closely related liquid loading problem we refer to 

Christofides, Mingozzi, and Toth (1979) . 

1.2. Related work 

Problem MCBCP can be seen as the dual version of the max- 

imum cardinality bin packing problem (MCBPP) which consists in 
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determining the maximum number of indivisible items that can 

be packed into the m bins so that the total weight of each 

bin does not exceed C . The MCBPP has been widely studied in 

terms of upper bounds and exact solution procedures ( Labbé, 

Laporte, & Martello, 20 03; Peeters & Degraeve, 20 06 ), worst- 

case performance of heuristics ( Coffman & Leung, 1979; Coff- 

man, Leung, & Ting, 1978; Langston, 1984 ), probabilistic anal- 

yses ( Bruno & Downey, 1985; Foster & Vohra, 1989; Rhee & 

Talagrand, 1993 ), meta-heuristics ( Loh, Golden & Wasil, 2009 ), 

and innovative applications ( Vijayakumar, Parikh, Scott, Barnes, 

& Gallimore, 2013 ). In contrast to the variety of publications 

on MCBPP, to the best of our knowledge we are the first to 

study its dual version MCBCP which has recently been men- 

tioned for the first time by Coffman, Csirik, Galambos, Martello 

and Vigo (2013) as a natural variant of the bin covering problem 

(BCP). 

The BCP itself has been introduced by Assmann, Johnson, 

and Kleitman (1984) as the dual version of the classical one- 

dimensional bin packing problem. So far, related work on variants 

of the BCP stem from, e.g., Fukunaga and Korf (2007) who consid- 

ered the problem of minimizing the total cost of the used items 

to cover m variable sized bins, Csirik, Epstein, Imreh, and Levin 

(2010) who examined the online and two semi-online versions of 

the problem of minimizing the total weight of the items used to 

cover m bins, Epstein, Imreh, and Levin (2010) who investigated 

a class constrained bin covering problem where each item has a 

color associated with it and the goal is to cover as many bins as 

possible subject to the constraint that the total number of distinct 

colors in each bin has to be at least l , and Epstein, Imreh, and 

Levin (2013) who studied the cardinality constrained bin cover- 

ing problem which consists in maximizing the number of covered 

bins subject to the constraint that each bin must contain at least k 

items. 

Returning to the MCBCP and its ILP formulation, it becomes ob- 

vious that MCBCP belongs to the class of mixed packing covering 

integer programs which are formally defined as: 

Minimize z = c T x (5) 

subject to 

Ax ≥ a (6) 

Bx ≤ b (7) 

x ≤ d (8) 

x ∈ Z 

N 
≥0 (9) 

where A ∈ R 

M×N 
≥0 

, B ∈ R 

R ×N 
≥0 

, a ∈ R 

M 

> 0 , b ∈ R 

R 
≥0 , c ∈ R 

N 
≥0 , and d ∈ R 

N 
> 0 

(cf. Kolliopoulos & Young, 2005 ). The constraints (6), (7) , and 

(8) are called covering, packing, and multiplicity (or capacity) con- 

straints, respectively. Note that the multiplicity constraints can 

also be modeled by adding (at most) N rows to B – one for 

each constraint x j ≤ d j ( < ∞ ). This equivalent notation appeared 

in Kolliopoulos and Young (2001) under the name Covering Inte- 

ger Problems (CIP) with generalized multiplicity constraints. How- 

ever, it is also important to note that a packing constraint cannot 

be multiplied by −1 in order to be turned into a covering con- 

straint because the problem definition presupposes non-negative 

data. 

Setting M = m, R = n, N = mn, a = (C, . . . , C) (M elements), b = 

(1 , . . . , 1) (R elements), c = d = (1 , . . . , 1) (N elements), and 

a ī ̄j := 

{
w j for ī = 1 , . . . , m and j̄ = ( ̄i − 1) n + j ( j ∈ { 1 , . . . , n } ) 
0 else, 

b 
k̄ ̄j 

:= 

{
1 for k̄ = 1 , . . . , n and j̄ = k̄ , n + ̄k , . . . , (m − 1) n + ̄k 
0 else 

as well as x = (x 11 , . . . , x 1 n , x 21 , . . . , x 2 n , . . . , x m 1 , . . . , x mn ) it is read- 

ily verified that MCBCP is a representative of mixed packing cov- 

ering integer problems. Note that in our case the multiplicity con- 

straints (8) are redundant. 

A special case of CIPs with generalized multiplicity constraints 

is obtained when B is the N × N -identity matrix, i.e. when no pack- 

ing constraints are existent. This problem version (i.e. (5), (6), (8) , 

and (9) ) is called CIP with multiplicity constraints and has been 

studied by, e.g., Dobson (1982) ; Kolliopoulos and Young (2001) and 

Kolliopoulos (2003) . When no multiplicity constraints are consid- 

ered at all (i.e. (5), (6) , and (9) ) we speak of the classical CIP (see, 

e.g., Srinivasan, 1999 ). At this point it is important to note that 

due to the presence of the constraints (3) we cannot formulate the 

MCBCP either as a CIP or as a CIP with multiplicity constraints. 

With regards to algorithms for solving CIPs with generalized 

multiplicity constraints (and thus the MCBCP), to the best of 

our knowledge, merely three approximation algorithms are to be 

found in the literature for which, however, only analytical re- 

sults are available but no computational ones. The first algo- 

rithm stems from Kolliopoulos and Young (2001) and is based 

on “finely” rounding a fractional optimal solution. The authors 

showed that for any ε > 0, an integral solution ˆ x of cost 

O( max { 1 , 1 /ε 2 } (1 + ( log M) /W )) times the optimum of the stan- 

dard linear programming relaxation can be obtained in determinis- 

tic polynomial time which satisfies A ̂  x ≥ a and (B ̂ x ) r ≤ � (1 + ε) b r + 

O( min { ε 2 , 1 } βr W/ ( log M)) � for all r = 1 , . . . , R where βr is the sum 

of coefficients at the r th row of B and W is defined as min { a i /A i, j | 
A i, j > 0 , i = 1 , . . . , M, j = 1 , . . . , N} . So, obviously, the solution re- 

turned by this algorithm cannot guarantee to meet all packing con- 

straints. Note that we have βr = n for all r and W = C/w 1 in the 

MCBCP. 

The other two methods are bi-criteria approximation algorithms 

and presented in Kolliopoulos and Young (2005) . According to the 

authors, for any ε ∈ (0, 1], the second algorithm finds a solution ˆ x 

of cost O 

(
1 + ln (1 + α) /ε 2 

)
times the optimum, satisfying A ̂  x ≥ a, 

B ̂ x ≤ (1 + ε) b + β, and ˆ x ≤ d where β = (β1 , . . . , βR ) and α is the 

maximum number of covering constraints that any variable ap- 

pears in. Note that we have α = 1 in the MCBCP. Again, this algo- 

rithm cannot guarantee that its returned solution meets the pack- 

ing constraints. The same applies as well to the third one which, 

indeed, has a better (asymptotic) cost guarantee but even violates 

the multiplicity constraints. Therefore, we omit any further algo- 

rithmic details and refer to Kolliopoulos and Young (2005) . 

In contrast to the scarce literature on CIPs with generalized 

multiplicity constraints there exists a considerable body of litera- 

ture on CIPs/CIPs with multiplicity constraints and several specific 

variants thereof which, for instance, differ in restrictions on the do- 

mains of the input data. However, as our MCBCP cannot be formu- 

lated as a CIP (with multiplicity constraints), we abstain from re- 

viewing algorithms for solving CIPs (with multiplicity constraints). 

Summarizing, as can be seen from the aforementioned analyt- 

ical results, the three algorithms introduced in Kolliopoulos and 

Young (2001) and Kolliopoulos and Young (2005) are only ap- 

propriate when B has small row sums or when no packing con- 

straints have to be taken into account. Since neither is the case 

with MCBCP, application of the existing methods can yield solu- 

tions where the packing constraints are violated by a large factor. 

Hence, there is an obvious need for suited solution procedures. 

1.3. Contribution and paper structure 

It is the intention of this paper to provide the required al- 

gorithms that are capable of generating feasible and high-quality 
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