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a b s t r a c t 

The paper considers repairable systems under imperfect repair. The failure rate of a new system is as- 

sumed to follow a Weibull distribution and the repair efficiency is characterized by a Kijima type II virtual 

age model named Arithmetic Reduction of Age with infinite memory. An analytical approach to obtain the 

distribution of the inter-failure times is presented. The existence of a stationary regime is highlighted and 

the limiting distributions are explicitly derived. In this context, an optimal age-based preventive mainte- 

nance policy can be implemented. Three approaches are proposed, considering a static, a dynamic or a 

failure limit policy. Numerical simulations are presented to illustrate the policies. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

During their operational life, industrial systems are subject to 

repair actions when a failure occurs. A repair activity is aimed to 

reduce the failure rate of the system and to extend its useful life- 

time. The maintenance process has to take into account both the 

intrinsic aging of the system and the repair effectiveness. These 

two elements allow a better understanding of the system behav- 

ior in the short and long terms and the maintenance policy can be 

adapted consequently. 

Repair efficiencies are commonly assumed to be either mini- 

mal or perfect. A minimal or As Bad As Old (ABAO) repair assumes 

that the system is restored to its operational condition just before 

the failure. A perfect or As Good As New (AGAN) repair consists in 

restoring the system to a new and identical one. Minimal repair 

and perfect repair can be characterized by a non-homogeneous 

Poisson process and a renewal p rocess ( Ascher & Feingold, 1984 ), 

respectively. However, for a repairable system, these assumptions 

are not always realistic as the system can be effectively repaired 

but is not renewed. This situation is described as imperfect main- 

tenance ( Pham & Wang, 1996 ). A thorough account of imper- 

fect maintenance modeling for repairable systems is developed by 

Lindqvist (2006) . In the context of imperfect repair, the implemen- 
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tation of optimal maintenance policies have been developed by 

Nakagawa (2005) and by Pham and Wang (2006) . The optimization 

of imperfect maintenance policies are discussed considering reli- 

ability block diagrams ( Levitin & Lisnianski, 20 0 0 ) and examples 

of application to failure data are presented by Baker (2001) and 

Dijoux and Gaudoin (2014) . 

Virtual age models ( Kijima, Morimura, & Suzuki, 1988 ) are the 

most frequently used imperfect repair models. The principle is that 

the wear-out does not depend on the chronological age of the sys- 

tem, but on a virtual age, commonly between zero and the elapsed 

time since the system was new. A virtual age model is entirely 

characterized by the failure rate of a new system and by the vir- 

tual age assumptions. In particular, Kijima (1989) has proposed two 

widespread classes of virtual age assumptions. He supposes that 

each repair efficiency is represented by a random variable sup- 

ported on the interval [0,1]. A model under Kijima Type I assump- 

tion is such that a repair rejuvenates the virtual age of a propor- 

tional amount of the last inter-failure duration, whereas a model 

under Kijima Type II assumption supposes that the rejuvenated 

amount is proportional to the virtual age just before the repair. A 

particular case is to consider that the repair efficiency is a constant 

ρ ∈ [0, 1], called restoration factor. The resulting models have been 

developed by Malik (1979) and by Brown, Mahoney, and Sivazlian 

(1983) for the Kijima type I and II models, respectively. A unified 

version of the last two models has been presented by Doyen and 

Gaudoin (2004) , called model of arithmetic reduction of age with 

memory m , and denoted ARA m 

. The ARA 1 and ARA ∞ 

models are 

special cases of the Kijima Type I and II models, respectively. The- 

oretical results on the ARA 1 model are developed in the literature 

( Kijima & Sumita, 1986; Malik, 1979; Yevkin, 2012 ) and are applied 
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in maintenance scheduling ( Dimitrakos & Kyriakidis, 2007; Jiang, 

Makis, & Jardine, 2001; Kijima et al., 1988; Love, Zhang, Zitron, 

& Guo, 20 0 0; Makis & Jardine, 1993 ). Similarly, some properties 

of the ARA ∞ 

model are discussed when it is introduced ( Doyen & 

Gaudoin, 2004; Kijima, 1989 ). These models are also developed in 

the presence of different kinds of maintenance actions ( Dijoux & 

Idée, 2013; Doyen & Gaudoin, 2011 ). 

Last and Szekli (1998) have proven the convergence of the Ki- 

jima Type II model, and hence of the ARA ∞ 

model, to a steady- 

state regime. Finkelstein (2008) has proven the convergence of the 

ARA ∞ 

model to a steady-state regime when the repair efficiency 

depends on the chronological age of the system. In contrast, Doyen 

(2010) has proven that the ARA 1 model behaves asymptotically as 

a non-homogeneous Poisson process. These properties highlight a 

major difference between the ARA 1 and ARA ∞ 

models when the 

restoration factor is in the interval ]0, 1[. If the failure rate of a 

new system is increasing monotonically to infinity, the inter-failure 

times converge to zero for the ARA 1 model and to a stationary dis- 

tribution for the ARA ∞ 

model. 

This paper aims to solve a maintenance problem inspired by a 

failure data set of electrical transformers given by French electrical 

company (Électricité de France-EDF). Data consist of maintenance 

dates without any information on type of maintenance and the age 

of the system. The data concern systems running for a long and 

unknown period of time. However, the failure data are available on 

a short and recent time window even if the systems have been im- 

plemented decades ago. The data could be assumed to correspond 

to the system stable regime, but one needs appropriate tools to 

take into account the lack of information on the system history. 

In this framework, it is of essential interest to infer the system’s 

behavior in order to improve the maintenance policy and to plan 

efficient maintenance operations. Since the ARA ∞ 

model exhibits a 

convergence property (existence of a stable regime), it is a suitable 

candidate to model the data set. 

In fact the ARA models, in particular ARA 1 and ARA ∞ 

have been 

intensively studied and in this framework many preventive main- 

tenance policies are proposed. Nevertheless, in the literature, the 

imperfect preventive maintenance in an infinite horizon is rarely 

addressed. For instance 

• Dagpunar (1998) proposes block replacement policy with ARA ∞ 

corrective maintenance and perfect preventive maintenance. 

The optimal duration between two preventive maintenance is 

derived, based on the computation of mean number of correc- 

tive maintenance actions during this period. 
• Kijima et al. (1988) study block replacement policy with ARA 1 

corrective maintenance and perfect preventive maintenance. 

They develop an approach to compute the mean number of 

ARA 1 corrective maintenance between two consecutive perfect 

preventive maintenance actions. 
• Gilardoni, de Toledo, Freitas, and Colosimo (2015) study peri- 

odic preventive maintenance policy using ARA 1 corrective main- 

tenance and perfect preventive maintenance. The policy is 

first built for finite horizon and then extended to an infinite 

horizon. 
• Tsai, Liu, and Lio (2011) study planned preventive maintenance 

policy. The preventive maintenance effect is similar to the ARA 1 

maintenance, whereas corrective maintenance is minimal. The 

policy is optimized in a finite horizon. 
• Gilardoni and Colosimo (2007) propose a similar policy ( ARA 1 

preventive maintenance and minimal corrective maintenance) 

optimized on an infinite horizon. 

The main contribution of our paper is first to derive original 

theoretical properties of the WARA ∞ 

model and then to develop 

original preventive maintenance policies. Regarding specifically the 

optimization of the preventive maintenance policy, our main con- 

tributions are listed as follows: 

• For the first time, maintenance policies are derived on an in- 

finite horizon considering imperfect CM and imperfect PM. 

Therefore there is at no moment an as good as new (perfect, 

renewal) replacement of the system during its operational life- 

time. All the papers in the literature consider renewals under 

an infinite horizon. 
• Thanks to the theoretical results in the stationary regime from 

the first Section, efficient and analytical approximations of the 

optimal maintenance policy are obtained without using Monte 

Carlo simulations. 

The remainder of the paper is organized as follows. In Section 2 , 

properties of the WARA ∞ 

are developed to obtain statistical distri- 

butions of interest in both the transient and the stationary regimes. 

Based on these distributions, planned preventive maintenance poli- 

cies are proposed in Section 3 , along with numerical illustrations. 

2. Properties of the WARA ∞ 

model 

2.1. The repair process 

A repairable system has been observed since it was new. The 

observations consist of the successive maintenance times { T i } i ≥ 0 . 

The corresponding inter-maintenance times are denoted { X i } i ≥ 1 

and the repair process can also be characterized by a counting pro- 

cess { N t } t ≥ 0 where N t = 

∑ ∞ 

i =1 1 { T i <t} . By convention, T 0 and X 0 are 

equal to zero and time can be either calendar or operational. The 

distributions are obtained from the failure intensity defined in (1) , 

where H t − is the history of the repair process at time t −, com- 

monly the failure times before t . 

∀ t ≥ 0 , λt = lim 

�t→ 0 

1 

�t 
P (N t+�t − N t − = 1 |H t − ) (1) 

The failure rate of a new system, called initial failure intensity 

and denoted λ( t ), is assumed to be a deterministic and continuous 

function of time. It corresponds to the hazard rate of T 1 . The cumu- 

lative hazard rate function is denoted �(t) = 

∫ t 
0 λ(u ) du . f , F and R 

are the corresponding probability density function, cumulative dis- 

tribution function and survival function, respectively. As industrial 

systems are assumed to wear out, the initial failure intensity is tra- 

ditionally increasing. Consequently, the two-parameter Weibull dis- 

tribution has been chosen as in (2) . For wearing-out systems, the 

shape parameter β is greater than 1. 

∀ t ≥ 0 , λ(t) = αβt β−1 (2) 

A virtual age model ( Kijima et al., 1988 ) assumes that after the 

ith repair, the system behaves as a new and unmaintained one of 

age A i . This age is called effective age . The assumption is mathe- 

matically described in (3) , where Z is the time to failure of a new 

system and has the same distrib ution as X 1 . 

∀ i ≥ 0 , ∀ t ≥ 0 , P (X i +1 > t| X 1 , . . . , X i ) = P (Z > A i + t| Z > A i ) (3) 

The conditional survival function of the (i + 1) th inter-failure 

time in (3) is simply R (A i + t) / R (A i ) . The age of the system A 0 at 

the beginning of the observation is zero if the system is as good 

as new, and greater than 0 otherwise. At a given time t , the virtual 

age of the system V t is obtained from the latest effective age and 

the elapsed time since the last repair as in (4) . 

V t = A N t − + t − T N t − (4) 

The virtual age of the system just before the ith repair is de- 

noted A 

−
i 

. The failure intensity can be derived from the initial fail- 

ure intensity as in (5) . The variation of the virtual age V t and of the 

chronological time are identical between two consecutive failures. 
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