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a b s t r a c t 

A recent focal point in research on the vehicle routing problem (VRP) is the issue of robustness in which 

customer demand is uncertain. In this paper, we conduct a theoretical analysis of the demand distribu- 

tions whose induced workloads are as undesirable as possible. We study two common variations of VRP 

in a continuous approximation setting: the first is the VRP with time windows, and the second is the 

capacitated VRP, in which regular returns to the vehicle’s point of origin are required. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Since its original formulation in 1959, two of the primary fea- 

tures that have distinguished the vehicle routing problem (VRP) 

from the travelling salesman problem (TSP) have been the intro- 

duction of capacities on vehicles that originate from a central de- 

pot ( Dantzig & Ramser, 1959 ) and the imposition of time windows 

that constrain the times when customers can be visited ( Orloff, 

1976 ). Not surprisingly, the imposition of such constraints presents 

a major obstacle in obtaining solutions to a problem instance, both 

in terms of the added computational burden of finding solutions 

and in the overall quality of the solution itself. As identified in 

Bertsimas and Simchi-Levi (1996) , one useful feature of the ca- 

pacitated VRP is that one can actually describe the additional cost 

somewhat concretely: 

Any solution for the capacitated VRP has two cost components; 

the first component is proportional to the total “radial” cost 

between the depot and the customers. The second component 

is proportional to the “circular” cost; the cost of traveling be- 

tween customers. This cost is related to the cost of the optimal 

traveling salesman tour. It is well known ( Beardwood, Halton, 

& Hammersley, 1959 ) that, for large N , the cost of the opti- 

mal traveling salesman tour grows like 
√ 

N , while the total ra- 

dial cost between the depot and the customers grows like N .... 

Therefore, it is intuitive that when the number of customers is 

large enough the first cost component will dominate the opti- 

mal solution value. 
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The additional cost due to time windows is more difficult to 

quantify, although insights can be made under certain assumptions 

( Daganzo, 1987a ): 

Imagine an extreme case, where only a tiny fraction of the 

customers have very stringent...time window constraints. Be- 

cause, as we shall see, the distance travelled increases with 

[the square root of the number of time windows], the total sys- 

tem cost may be large because of the requirements of very few 

customers. 

This paper addresses VRP from the perspective of a continu- 

ous approximation model : we assume that a fleet of vehicles must 

provide service to a contiguous planar geographic region, and our 

goal is to quantify precisely the role that vehicle capacities and 

time windows play in the worst-case workloads of the vehicles. 

We assume that customer demands are independently sampled 

from a (possibly unknown) demand distribution, and study the 

asymptotic behavior of the worst-case distributions as the num- 

ber of customers becomes large. In this sense, our paper is philo- 

sophically similar to (for example) Burns, Hall, Blumenfeld, and 

Daganzo (1985) , which analytically determines trade-offs between 

transportation and inventory costs, ( Huang, Smilowitz, & Balcik, 

2013 ), which shows how to route emergency relief vehicles to ben- 

eficiaries in a time-sensitive manner, and Jabali, Gendreau, and La- 

porte (2012) , which describes a simple geometric model for de- 

termining the optimal mixture of a fleet of vehicles that perform 

distribution. The basic premise of the continuous approximation 

paradigm is that one replaces combinatorial quantities that are 

difficult to compute with simpler mathematical formulas, which 

(under certain conditions) provide accurate estimations of the de- 

sired quantity ( Campbell, 1992; Geunes, Shen, & Emir, 2007; No- 

vaes, de Cursi, & Graciolli, 20 0 0; Ouyang, 20 07 ). Such approxima- 

tions exist for many combinatorial problems, such as the travelling 
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salesman problem ( Beardwood et al., 1959; Few, 1955 ), facility 

location ( Haimovich & Magnanti, 1988; Hochbaum, 1984; Papadim- 

itriou, 1981 ), and any subadditive Euclidean functional such as a 

minimum spanning tree, Steiner tree, or matching ( Redmond & Yu- 

kich, 1994; Steele, 1987, 1981 ). In our computational districting ex- 

periment, an approximation of this kind is used as the first level 

of an optimization problem in which we design service zones that 

are associated with different vehicles. for example. Our study of 

the VRP with time windows adopts similar assumptions to those of 

Daganzo (1987a,1987b) , namely, that the service period is divided 

into a collection of pre-specified intervals of equal duration. One 

might contrast this model with other approaches like ( Figliozzi, 

2009 ), which assumes that time windows are independently drawn 

from an arbitrary probability measure. Our study of the capacitated 

VRP makes extensive use of upper and lower bounds derived in 

Bertsimas and van Ryzin (1993) ; Daganzo (1984) ; Haimovich and 

Rinnooy Kan (1985) , as well as seminal results on the TSP that can 

be found in Beardwood et al. (1959) ; Redmond and Yukich (1994) ; 

Steele (1981) . 

A more recent focal point in research on VRP and its variants is 

the issue of robustness in which one seeks a policy that performs as 

well as possible against all possible realizations of demand that are 

compatible with some set of observations or initial conditions. Ro- 

bust methodologies for the capacitated VRP were first introduced 

in the paper Sungur, Ordónez, and Dessouky (2008) , which adapts 

the methodology of Ben-Tal and Nemirovski (1998) to solve prob- 

lems in which customer demands and travel times are uncertain; 

the goal is to find vehicle routes that meet all feasibility require- 

ments in the worst-case scenario, which occurs precisely when all 

customer demands and travel times attain their worst-case realiza- 

tions simultaneously. In most models of the robust VRP, one has a 

pre-defined ambiguity region and seeks a set of routes that is as 

good as possible with respect to all of the outcomes; this ambi- 

guity region is usually described as a finite collection of scenarios 

or a polyhedral set ( Agra et al., 2013; Barkaoui & Gendreau, 2013; 

Gounaris, Wiesemann, & Floudas, 2013; Lee, Lee, & Park, 2011; 

Solyalı, Cordeau, & Laporte, 2012; Sungur et al., 2008 ), although 

the recent paper Allahviranloo, Chow, and Recker (2014) adopts a 

“robust mean-variance” approach that minimizes a weighted sum 

of the average cost and the variance of a route when sampled 

over many scenarios. In our problem, we are concerned with ro- 

bustness in the distributional sense ( Calafiore & El Ghaoui, 2006 ): 

we seek the distribution of demand for which the expected cost 

of a tour is as high as possible, while remaining consistent with 

some observed data samples or some parameters derived thereof. 

The most closely related result to our paper is ( Carlsson & Delage, 

2013 ), which determines the worst-case spatial demand distribu- 

tion for the TSP when the first and second moments are fixed. Our 

paper can be seen as a generalization of these principles to the 

cases where vehicles have capacities and time window constraints. 

Our present work uses the notion of robustness to study the 

negative consequences of fluctuation in demand for delivery ser- 

vices, in either a spatial or temporal sense. Demand fluctuation is 

of particular concern for emerging delivery services such as Good 

Eggs, DoorDash, BiteSquad, and Caviar ( Caviar, 2014; Door Dash 

Food Delivery, 2014; Food Delivery & Restaurants Delivery - Or- 

der Food Online - BiteSquad.com, 2014; Good Eggs, 2014 ), which 

face extremely high volatility in demand due to seasonality and the 

time-sensitive nature of the requests they satisfy ( GrubHub Inc., 

2014; Leetaru, 2016 ): 

Our business is highly dependent on diner behavior patterns 

that we have observed over time. In our metropolitan mar- 

kets, we generally experience a relative increase in diner ac- 

tivity from September to April and a relative decrease in diner 

activity from May to August. In addition, we benefit from in- 

creased order volume in our campus markets when school is in 

session and experience a decrease in order volume when school 

is not in session, during summer breaks and other vacation pe- 

riods. Diner activity can also be impacted by colder or more 

inclement weather, which typically increases order volume, and 

warmer or sunny weather, which typically decreases order vol- 

ume. Seasonality will likely cause fluctuations in our financial 

results on a quarterly basis. In addition, other seasonality trends 

may develop and the existing seasonality and diner behavior 

that we experience may change or become more extreme. 

In total, this paper makes the following contributions: 

Section 3 analyzes the vehicle routing problem with time windows, 

characterizing the worst-case distributions that can arise when de- 

mand varies over a specified time horizon. Section 4 deals with the 

capacitated VRP, and Section 5 extends this analysis to more so- 

phisticated models in which we have information about the mean 

or covariance of the demand distribution and describes some com- 

putational experiments. 

2. Preliminaries 

We make the following notational conventions in this paper: 

given a point set X , the star network of X is written SN (X ) and 

consists of the network in which each point in X is connected 

to some central “depot” point (the location of this central point 

will be made clear from context). Vehicle capacities are either de- 

noted by the letter c , indicating that a vehicle can visit c desti- 

nations before returning to its depot, or by the capacity coeffi- 

cient t , which satisfies the relationship c = t 
√ | X| ; this is a stan- 

dard and useful representation, as can be seen in Section 4.2 of 

Daganzo (2005) or the paper Daganzo (1984) . A TSP tour of a set 

of points will be denoted by TSP (X ) . A capacitated VRP tour of 

a set of points is written VRP (X ) , where we suppress the ca- 

pacity in the interest of notational brevity. Finally, we say that 

f ( x ) ∈ o ( g ( x )) if lim x →∞ 

f (x ) /g(x ) = 0 , we say that f ( x ) ∼ g ( x ) if 

lim x →∞ 

f (x ) /g(x ) = 1 , we say that f (x ) ∈ O(g(x )) if f ( x ) ≤ αg ( x ) 

for some c > 0 and all x exceeding some threshold x 0 , and we say 

that f ( x ) ∈ �( g ( x )) if f ( x ) ≥ αg ( x ) for all x exceeding some threshold 

x 0 . 

To approximate the length of a TSP tour of a collection of 

points, we will use the well-known BHH Theorem ( Beardwood 

et al., 1959 ), which says that the length of an optimal TSP tour 

of a set of points follows a law of large numbers: 

Theorem 1. Suppose that X = { X 1 , X 2 , . . . } is a sequence of random 

points i.i.d. according to a probability density function f ( ·) defined on 

a compact planar region R . Then with probability one, the length of 

TSP (X ) satisfies 

lim 

N→∞ 

length ( TSP (X )) √ 

N 

= β

∫ ∫ 
R 

√ 

f̄ (x ) dA 

where β is a constant and f̄ (·) represents the absolutely continuous 

part of f ( ·) . 
It is additionally known that 0.6250 ≤ β ≤ 0.9204 and esti- 

mated that β ≈ 0.7124; see Applegate, Bixby, Chvatal, and Cook 

(2011) , Beardwood et al. (1959) . Theorem 1 can also be expressed 

deterministically, removing any assumptions about the distribution 

of the points X i ; see for example Goddyn (1990) , Karloff (1989) : 

Theorem 2. There exists a constant α satisfying the following: if X = 

{ X 1 , X 2 , . . . } is any sequence of points contained in a compact planar 

region R with area 1, then 

lim sup 

N→∞ 

TSP (X 1 , . . . , X N ) √ 

N 

≤ α. 

Furthermore, it is also true that (4/3) 1/4 ≤ α < 1.392 . 
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