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a b s t r a c t 

Two-stage stochastic mixed-integer linear programming (MILP) problems can arise naturally from a vari- 

ety of process design and operation problems. These problems, with a scenario based formulation, lead to 

large-scale MILPs that are well structured. When first-stage variables are mixed-integer and second-stage 

variables are continuous, these MILPs can be solved efficiently by classical decomposition methods, such 

as Dantzig/Wolfe decomposition (DWD), Lagrangian decomposition, and Benders decomposition (BD), or a 

cross decomposition strategy that combines some of the classical decomposition methods. This paper pro- 

poses a new cross decomposition method, where BD and DWD are combined in a unified framework to 

improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD 

iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a se- 

quence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. The method 

terminates finitely to an optimal solution or an indication of the infeasibility of the original problem. Case 

study of two different supply chain systems, a bioproduct supply chain and an industrial chemical supply 

chain, show that the proposed cross decomposition method has significant computational advantage over 

BD and the monolith approach, when the number of scenarios is large. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Mixed-integer linear programming (MILP) paradigm has been 

applied to a host of problems in process systems engineering, in- 

cluding but not limited to problems in supply chain optim iza- 

tion ( Papageorgiou, 2009 ), oil field planning ( Iyer & Grossmann, 

1998 ), gasoline blending and scheduling ( Li, Karimi, & Scrinivasan, 

2010 ), expansion of chemical plants ( Sahinidis & Grossman, 1992 ). 

In such applications, there may be parameters in the model that 

are not known with certainty at the decision making stage. These 

parameters can be customer demands, material prices, yields of 

the plant, etc. One way of explicitly addressing the model uncer- 

tainty is to use the following scenario-based two-stage stochastic 

programming formulation: 

min 

x 0 
x 1 ,...,x s 

s ∑ 

ω=1 

[ c T 0 ,ω x 0 + c T ω x ω ] 

s.t. A 0 ,ω x 0 + A ω x ω ≤ b 0 ,ω , ∀ ω ∈ { 1 , ..., s } , 
x ω ∈ X ω , ∀ ω ∈ { 1 , ..., s } , 
x 0 ∈ X 0 , (SP) 
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where x 0 = (x 0 ,i , x 0 ,c ) includes the first-stage variables, where 

x 0, i includes n i integer variables and x 0, c includes n c continu- 

ous variables. Set X 0 = { x 0 = (x 0 ,i , x 0 ,c ) : B 0 x 0 ≤ d 0 , x 0 ,i ∈ Z 

n i , x 0 ,c ∈ 

R 

n c } . x ω includes the second-stage variables for scenario ω and set 

X ω = { x ω ∈ R 

n x : B ω x ω ≤ d ω } . Parameter b 0 ,ω ∈ R 

m , and other pa- 

rameters in problem (SP) have conformable dimensions. Note that 

the second-stage variables in (SP) are all continuous. 
Usually a large number of scenarios are needed to fully cap- 

ture the characteristics of uncertainty; as a result, Problem (SP) 

becomes a large-scale MILP, for which solving the monolith (full 

model) using commercial solvers (such as CPLEX) may fail to re- 

turn a solution or return a solution quickly enough. However, Prob- 

lem (SP) exhibits a nice block structure that can be exploited for 

efficient solution. Fig. 1 illustrates this structure. The structure of 

the first group of constraints in Problem (SP) is shown by part (1) 

of the figure, and the structure of the last two groups is shown by 

part (2). 
There exist two classical ideas to exploit the structure of Prob- 

lem (SP) . One is that, if the constraints in part (1) are dualized, 

Problem (SP) can then be decomposed over the scenarios and 

therefore it becomes a lot easier to solve. With this idea, the 

first group of constraints in Problem (SP) are viewed as link- 

ing constraints . Dantzig/Wolfe decomposition (DWD) ( Dantzig & 

Wolfe, 1960 ) or column generation ( Applegren, 1969; Desaulniers, 

Desrosiers, & Solomon, 2005 ) is one classical approach following 
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List of Acronyms 

BD Benders decomposition 

BFP Benders feasibility problem 

BPP Benders primal problem 

BMP Benders master problem 

BRMP Benders relaxed master problem 

CD Cross decomposition 

DWD Dantzig/Wolfe decomposition 

DWMP Dantzig/Wolfe master problem 

DWRMP Dantzig/Wolfe restricted master problem 

DWFRMP Dantzig/Wolfe feasibility restricted master problem 

DWPP Dantzig/Wolfe pricing problem 

DWFP Dantzig/Wolfe feasibility pricing problem 

IPP Initial pricing problem 

LD Lagrangian decomposition 

LP Linear Programming 

MILP Mixed-integer linear program/programming 

RLD Restricted Lagrangian dual problem 

SCO Supply chain optimization 

SP Stochastic programming 

this idea. In this approach, constraints in part (1) are dualized 

to form a pricing problem. The optimal solution of the pricing 

problem not only leads to a lower bound for Problem (SP) , but also 

provides a point, or called a column , which is used to construct 

a restriction of set 
∏ s 

ω=1 X ω . With this restriction, a (restricted) 

master problem is solved, and the solution gives an upper bound 

for Problem (SP) and new dual multipliers for constructing the 

next pricing problem. Another approach following the same idea 

is Lagrangian decomposition/relaxation ( Caroe & Schultz, 1999; 

Geoffrion, 1974; Guignard & Kim, 1987 ), where a lower bound- 

ing Lagrangian subproblem is solved at each iteration and the 

Lagrange multipliers for the subproblems can be generated by 

solving the non-smooth Lagrangian dual problem or by some 

heuristics. Since this idea relies on the fact that the dualization 

of the constraints in part (1) is not subject to a dual gap, these 

methods can finitely find an optimal solution of Problem (SP) . If 

integer variables are present, the methods have to be used in a 

branch-and-bound framework to ensure finite termination with an 

optimal solution ( Barnhart & Johnson, 1998; Caroe & Schultz, 1999; 

Frangioni, 2005 ), such as the branch-and-price method ( Barnhart & 

Johnson, 1998; Desrosiers & Marco, 1989; Lubbecke & Desrosiers, 

2005; Oukil, Amor, Desrosiers, & Gueddari, 2007; Vance, Barnhart, 

Johnson, & Nemhauser, 1994; Vanderbeck, 20 0 0; 20 06; 2011 ) and 

the branch-price-cut method ( Coughlan, Lubbecke, & Schulz, 2015 ). 

The other idea to exploit the structure is based on the fact that, 

if the value of x 0 is fixed, then the block column A 0 , 1 , . . . , A 0 ,s in 

part (1) no longer links the different scenarios and therefore Prob- 

lem (SP) becomes decomposable over the scenarios. With this idea, 

the first-stage variables are viewed as linking variables . Benders De- 

composition (BD) ( Benders, 1962 ) or L-shaped method ( Slyke & 

Wets, 1969 ) is a classical approach following this idea. In this ap- 

proach, through the principle of projection and dualization, Prob- 

lem (SP) is equivalently reformulated into a master problem, which 

includes a large but finite number of constraints, called cuts . A 

relaxation of master problem that includes a finite subset of the 

cuts can be solved to yield a lower bound for Problem (SP) as 

well as a value for x 0 . Fixing x 0 to this value yields a decom- 

posable upper bounding problem for Problem (SP) . One impor- 

tant advantage of BD over DWD or Lagrangian decomposition is 

that, finite termination with an optimal solution is guaranteed, 

no matter whether x 0 includes integer variables. However, when 

x 0 is fixed for some problems, the primal problem can have de- 

Fig. 1. The block structure of Problem (SP). 

generate solutions ( Contreras, Cordeau, & Laporte, 2011; Magnanti, 

1981; Van Roy, 1986 ), resulting in redundant Bender cuts and slow 

convergence of the algorithm ( Balas & Bergthaller, 1983; Florian, 

Guerin, & Bushel, 1976 ). 

It is natural to consider synergizing the two aforementioned 

ideas for a unified decomposition framework that not only guar- 

antees convergence for mixed-integer x 0 , but also leads to im- 

proved convergence rate. Van Roy proposed a cross decomposi- 

tion method, which solves BD and Lagrangian relaxation subprob- 

lems iteratively for MILPs with decomposable structures ( Van Roy, 

1983 ). The computational advantage of the method was demon- 

strated through application to capacitated facility location prob- 

lems ( Van Roy, 1986 ). Further discussions on the method, includ- 

ing generalization for convex nonlinear programs was done by 

Holmberg (1990, 1997) . One important assumption of this cross 

decomposition method is that, the (restricted or relaxed) mas- 

ter problems from BD and Lagrangian relaxation are difficult to 

solve and should be avoided as much as possible. However, this 

is usually not the case for Problem (SP) . Therefore, Mitra, Garcia- 

Herreros, and Grossmann (2014, 2016) recently proposed a differ- 

ent cross decomposition method, which solves subproblems from 

BD and Lagrangian decomposition equally frequently. They showed 

that their cross decomposition method was significantly faster than 

BD and the monolith approach for a two-stage stochastic program- 

ming formulation of a resilient supply chain with risk of facility 

disruption ( Garcia-Herreros, Wassick, & Grossmann, 2014; Snyder 

& Daskin, 2005 ). Both Van Roy and Mitra et al. assumed that all 

the subproblems solved are feasible. 

In this paper, we propose a new cross decomposition method 

which has two major differences from the cross decomposition 

methods in the literature. First, we combine BD and DWD instead 

of BD and Lagrangian decomposition in the method. Second, we 

solve the subproblems in a different order. In addition, we include 

in the method a mechanism so that the algorithm will not be stuck 

with infeasible subproblems. In order to simplify our discussion, 

we rewrite Problem (SP) into the following form: 

min 

x 0 ,x 
c T 0 x 0 + c T x 

s.t. A 0 x 0 + A x ≤ b 0 , 

x ∈ X , 

x 0 ∈ X 0 , 

(P) 
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