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1. Introduction

In the last decade's research on human arm motor control has been
object of great investigation, leading to some themes of high interest, like
planning, execution and learning [1]. Movement of primates is the result
of information processing in a complex hierarchy of motor centres within
the nervous system and there are several studies which support the idea
that reaching and pointing movements are accomplished by the combi-
nation of primitive elements, namely discrete motion units called
sub-movements. The empirical evidences of the existence of discrete
sub-movements which compose continuous humanmovement, prompted
the scientists to characterize them.

Like primitives in natural languages for generating complex gram-
matic paradigms, these discrete blocks can be combined by the central
nervous system to produce more complex motor behaviours. A precise
and quantitative definition of such discrete blocks represents the major
goal of motor control investigations, so providing the possibility to
investigate the human movement at a profounder level than has been
previously conceivable. Moreover, the sub movements analysis can be
performed on the movements of patients recovering from a stroke.

However, since the precise sub-movement shapes are not known (e.g.,
the time profile of any measured variable such as velocity), the detailed
decomposition for extracting them from continuous movements has not
been until now appropriately defined. Without the precise sub-
movement shapes, the decomposition problem is indeterminate [2,3].
Consequently, any of an infinite set of candidate sub-movement shapes
could be combined to compose a continuous movement.

The difficulty of the overall decomposition models, which try to
deduce the correct structure of the sub-movement shapes, arises from the
redundancy of the human motor system as well as the redundant nature
of movement tasks.

For example, even a simple reaching movement toward a target in the
free space, taking the hand from the initial to the final position, can admit
several possible solutions and consequently several possible trajectory
and velocity profiles.

In mathematical parlance, this is an “ill-posed” problem in the sense
that many solutions are possible.

This redundancy results from of the 7� of freedom (DOF) of the ki-
nematic structure of the human arm, so exceeding the minimum neces-
sary number (6 DOF) to move the hand in the three-dimensional
space [4–6].

Because of the previous statement, sub-movement decomposition is a
non-linear optimization problem: simultaneously maximizing goodness
of fit and minimizing the number of sub-movements used, given a sub-
movement shape, e.g. minimum-jerk or Gaussian and a summing mo-
dality, e.g. scalar summation, or vector summation. As a non-linear
optimization problem, the sub-movement decomposition may have
multiple local minima and the optimality of the solution for these
methods depends heavily on the quality of the initial guess; unless the
initial guess is about the global minimum, they will not find the
best solution.

Both local and global optimization methods [7–10] have been pro-
posed in the last decades in the attempt to correctly infer the sub-
movements shapes. The first were based on the examination of the de-
rivatives of the trajectory to identify local peaks; however, even with
visually convincing results, these methods were sensitive to getting
caught in local minima, so leading to spurious decompositions. Even in a
simulated “test” case, where continuous movements were composed by
known a-priori sub-movements, these methods were not able to reliably
recover the underlying blocks.

The Brunch and Bound method, a global optimization method, pro-
posed by Rohrer [11–13] avoids spurious decompositions, is robust to the
assumed sub-movement shape and can correctly extract the sub-
movement even in the presence of substantial measurement noise.
However, the high computational “costs” of the Branch and Bound
induced Roher to develop an alternative sub-movement extraction al-
gorithm based on the notion of “scattershot” optimization. The latter
represents a local optimization method and it “offers” all the above-
mentioned limitations related to such methods. The results are “glob-
ally excellent” with a probability very close but not equal to 1.
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Moreover, this method needs to define the number of components
should be established in advance. In this paper, taking cue on the mini-
mum jerk theory (bell-shaped velocity profile), a hybrid decomposition
method to extract the sub-movements shapes is proposed, which ensures
a robust initial guess for a correct decomposition. This method has been
tested for the decomposition of one hundred simulated velocity profiles.

2. Methods

Despite the several possible solutions when humans are required to
reach a target in free space, each one produces movements with certain
invariant kinematic properties, showing the peculiarity to select one path
from the many available. Several works [14–16] have shown that un-
impaired planar reaching movements (RMs), regardless of whether
single-joint or multi-joint movements and without any overriding
requirement such as maximum speed or precision, are characterized by a
straight path of the hand movement in the Cartesian space and by the
bell-shaped velocity profile. This behaviour produces smooth and accu-
rate movements, in according with the minimum jerk theory [14], with
the smoothness which is referred as the major goal underlying move-
ment control.

Here, to extract sub-movements composition, we take cue on the
above mentioned minimum jerk theory stating that the shape of the ve-
locity profile of the hand, in point to point human arm movements, is
bell-shaped. Taking inspiration from the Gaussian Mixture Model, the
velocity profiles are modelled as Gaussian pulses of various lengths [17],
being known that the graph of a Gaussian function is a characteristic
symmetric “bell curve” shape. In mathematical terms, each deterministic
velocity profile is expressed with the following expression:
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where αi is the amplitude of the basic function, μi and σi are respectively
the mean and standard deviation of the Gaussian base functions, M is the
number of pulses. The estimation of the parameters of such deterministic
model is reached by means of a probabilistic approach, typically used for
the mixture parameters, by first computing an estimate of the parameter
and then refining the estimate by maximizing a likelihood function
(maximum-likelihood estimation method, MLE). Basically, MLE in-
volves estimating the parameters by maximizing the likelihood function,
l(X; Φ), this being simply the joint probability of the observations xj
regarded as a function of the parameters:
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where N is the number of observation points and f(xj;Φ) is a mixture of M
normal density functions. It is known that the algorithm for computing
maximum likelihood estimates in the normal mixture case is the EM al-
gorithm, which has several good computational properties, including a
low storage requirement and a low work cost per iteration. The EM al-
gorithm iteratively generates, starting from some initial approximation
Φ(r), a sequence Φ(rþ1) of estimates. However, it is widely
acknowledged that EM suffers from some issues. Firstly, typical imple-
mentations of Expectation Maximization require the user to specify the
number of model components. This is critical because users do not
generally know the correct number of components. This problem is
particularly “felt” in the decomposition problem of the reaching move-
ments, where is not known in advance.

Secondly the EM, being a local maximum seeker, when the likelihood
function is unbounded (for instance in the case of heteroscedastic model),
may converge to some singularities and this causes the failure of the
optimization procedure. So, EM is not guaranteed to converge to the
global maximum of the likelihood function but may instead converge to a
local maximum. Therefore, different initial parameter values can lead to

different model parameters and different model quality.
Trying to overcome these limitations, a constrained-EM (CEM) algo-

rithm [17] was proposed by Chen. At first, CEM algorithm uses the
scale-space filtering (SSF) approach [18] to detect the number of com-
ponents M0 which probably compose the mixture. The procedures of
initial estimation are summarized as follows: i) apply a Gaussian filter of
standard deviation σf to smooth the input signal by convolution; ii) re-
cord the pairs (upper and lower) of turning points which are determined
from the zero-crossings of the second derivative in the scale-space image
(SSI). The number of components (M0) is determined by the number of
pairs of turning points. Once determined the number M0 of components,
the initial set of the parameters σ0, μ0, α0 of the mixture was made.

Then, the CEM model iteratively refine the initial estimate and rea-
ches, starting from the initial estimate (σ0, μ0, α0), to the final estimates
of the σ, μ, α parameters and of the final number M of the components
(merging or deleting the components if they are too small). To increase
the robustness of the final estimates, the algorithm imposes several
condition and constraints in the Maximization (M) step and at the end of
the convergence test, to limit the search space and excluding
spurious maxima.

The above described procedure has been applied by Chen [17] to
decompose the EMG linear envelope signal but here is readapted to the
decomposition of RM and improved with appropriate adjustments.

In fact, the results of the algorithm proposed by Chen strongly depend
to the initial estimates of the number components M0. Different σf values
leads to different number components M0 for the same velocity profile to
be decomposed.

Moreover, the SSF may converge to a spurious maximum and thus
multiple solutions could present. This is a critical issue in the extraction
of sub-movements in a velocity profile, where no reliable a priori infor-
mation is not available about the number of sub-movements in each
velocity profile of a reaching movement.

In the original SSF approach, the decision of the correct σf value, was
arbitrary set starting from several randomly candidate values and de-
pends on the specific application. An unreliable value for the σf leads to
set too many or too few components producing an over-fitting or under-
fitting, respectively. Moreover, the estimate of the parameters σ0, μ0,
α0 is not accurate.

In this work, the initial estimate of the number M0 components and
the initial set of the parameters σ0, μ0, α0 are obtained reinforcing the
SSF with the Smoothing and Differentiation Savitzky-Golay Filter (SGF),
polynomial order N ¼ 3, frame length ¼ 19.

At first, the velocity profile is filtered with the SGF to find the pairs of
zero-crossings of the second derivative. The number of pairs of zero-
crossings defines an initial estimate of number of components M0,
which probably compose the velocity profile.

Subsequently, a modified SSF is considered. A Gaussian Filter of
standard deviation σf (starting from a value of 0.01) is applied to the
velocity profile. Then, the σf value is iteratively increased, until the
current M number of founding components defined on the SSI is equal to
that defined (i.e., M0) with the Savitzky-Golay Filter (Fig. 1). When this
condition is verified (M ¼¼ M0), the Gaussian Filter Scale is set, the
turning points are identified and the initial set and the proper temporal
position of the parameters σ0, μ0, α0 is made. Finally, the parameters are
refined by the CEM and the final estimates σi, μi, αi are obtained.

3. Results

The above-described method has been tested in terms of number sub-
movements extracted one hundred velocity profiles simulated as normal
mixture densities (Gmidstribution – Statistic Toolbox –Matlab R2014a),
each consisting of different Gaussian components (blue and green
shapes) which characteristics which are known beforehand. The simu-
lated profiles have been generated considering the typical profiles
exhibited by humans when performing a reaching task [10,14,16].
Taking inspiration from the several stereotypical patterns which
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