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A B S T R A C T

In this paper we control the amount of three major biological cell types (normal, immune and tumor cells) under
uncertainty in cancer model parameters, using different chemotherapy drug dosages. To achieve this goal, an
adaptive robust controller is proposed for a third order nonlinear model, which consists of the interaction
between normal, immune and tumor cells. We adjust the drug dosages to control the tumor growth and
maintain immune and normal cells in their desired values. Due to tumor micro-environmental and biological
changes and measurement inaccuracies, the exact quantity of the model parameters is not available. Therefore,
it is necessary to design the controller in a way that it is robust against parameters uncertainty and variations,
the proposed robust adaptive controller manipulates the drug dosages and estimates the parameters of the
model, simultaneously. The resulting system is robust against parameters uncertainty and variations. The global
stability and tracking convergence of the controller is proved using time-varying Lyapunov function. Moreover,
extended Kalman filter observer is applied to estimate the immune cells, due to the difficulty measuring them
during the biological in vivo experiments. The performance of the proposed controller and observer are
investigated by computational results. Computational results show the desired effect of drug dosage injections
on the normal, immune and tumor cells. We observe that the controller guarantees the robust performance
against the parameters uncertainty. The extended Kalman filter observer has effective performance and
estimates the immune cells with high accuracy. This approach could impact robust tumor control using
appropriate drug dosages while the parameters of the model change over time in a patient and across different
patients.

1. Introduction

Cancer is one of the most important diseases that caused human
death in the world. There are many ways to treat cancer, such as
surgery, radiotherapy, chemotherapy, hormone therapy, and immu-
notherapy [1]. Among the various treatment methods, chemotherapy is
very important and widely used in practice. During this procedure
some normal cells may be killed in addition to cancer cells [2].

Chemotherapy has many different side effects such as disturbing
frequent dividing cells. The rate of division in cancer cells is more than
normal cells. Hence, cancer cells are more sensitive to chemotherapy.
In some tissues such as skin, hair and nails cell division happens more
frequently therefore, chemotherapy may damage these kind of cells [3].
But, normal cells repair the damage because of their intact protective
system. Genes which make chromosomes in nucleus, are the regulators

of cell activity. Genes are copied exactly in each cell division and
chemotherapy have potential to damage genes in different phases of
this process [4–6]. Normal cells located in a rest phase of cell cycle may
protect from chemotherapy damage [7,8]. Nowadays, to reduce che-
motherapy side effects, scientists suggested to combine chemotherapy
drugs in different stages of treatment. In this case there is more chance
to kill more cancer cells.

Mathematical modeling provides a low-cost approach to evaluate
different control strategies in cancer treatment, and shows the relation-
ship between the population of cancer cells, normal cells and drug
resistance, [9]. The general area of mathematical modeling of cancer
have been evolved recently and there are many papers about cancer
modeling in the literature, see e.g., [10] and [11]. Many mathematical
models have been proposed to evaluate the effects of a drug on tumor
behavior, [12–15]. To show the chemotherapy response to tumor
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growth, a simple mathematical model which consists of three differ-
ential equations associated with the normal cells, cancer cells and
chemotherapy drug, is presented in [16]. The effect of chemotherapy
on normal and cancer cells follow Michaelis-Menten saturation func-
tion as described in [17]. Various control strategies have been proposed
to reduce the side effects of drugs, see e.g., [18]. Especially, it is
important to know the effects of chemotherapy drugs on tumor growth,
[19]. Many control strategies have been proposed to control the tumor
size. In [20] optimal singular control in chemotherapy is presented. In
[21] a stochastic model of cancer chemotherapy is considered and
optimal controller is designed for this model. A tumor model with
immune resistance and drug therapy is presented in [22] and optimal
control is used to control the tumor growth.

There are various sources of uncertainty associated with che-
motherapy which prevents the above mentioned approaches to guar-
antee the robust performance of the controller. To guarantee a robust
performance in the presence of uncertainties, the robust control
approach have been proposed in [23]. In [24], two control strategies
are studied to make the system performance robust against uncertain-
ties. Theses methods are: optimal linear regulation and H∞ robust
control. H∞ controller has the best performance for system with
uncertainties; however its design is difficult. To design optimal linear
regulation, see e.g., [25], the nonlinear model should be linearized
around its operating point. Therefore, the performance of the controller
depends on the operating point and it performs well only around this
point. To solve this problem a nonlinear adaptive control strategy is
developed in [26]. In this work a first order nonlinear model of tumor
that only considers tumor cells have been used.

In this paper, a nonlinear robust adaptive control strategy is
developed for a third order nonlinear model. This model consists of
normal cells, immune cells, tumor cells, and the effect of chemotherapy
treatment. In our work, the tumor size, the amount of normal and
immune cells are controlled by adaptive variation of drug dosages. The
controller is designed based on Lyapunov stability theorem, and
guarantees the global stability and tracking convergence. Unlike, the
linear controllers that require the model of nonlinear system to be
linearized around the operating point, the proposed nonlinear con-
troller does not require any linearization. Moreover, the parameters of
the model have been estimated in the control loop, and the controller is
robust against parameters uncertainties associated with the model
dynamics. In addition, since the measurement of immune cells is
difficult in experimental labs an extended Kalman filter observer is
applied to estimate the immune cells.

This paper is organized as follows: Section 2 resents the nonlinear
cancer model used in work. Section 3 explains the design of our control
strategy and its stability. Section 4 describes the design of extended
Kalman filter observer to estimate the immune cells. Section 5 shows
the computational results and the convergence behavior of the
controller. Section 6 provides comparison with related work in the
literature and concluding remarks are made in Section 7.

2. Mathematical model of chemotherapy

There are many mathematical models for describing the che-
motherapy process, see, e.g., [27,28]. Since, the goal of this paper is
to propose a nonlinear control method which is robust against
parameters uncertainty. We have used a minimal order model of
chemotherapy to investigate the performance of this control strategy.
We chose the chemotherapy model of [29], which is widely used in the
literature, see e.g., [9]. This model includes the interaction of tumor
cells with normal and immune cells in a dynamical system. This
nonlinear model is presented below;
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N t( ), T t( ) and I t( ) represent the number of normal, tumor and immune
cells at time t , respectively. The drug injections are considered as the
control input in the model. u t( )1 , u t( )2 and u t( )3 denote the effect of
chemotherapy drugs. This model assumes a type of immune cell that
can cause the reduction of tumor size through a kinetic process. Also
this model includes immunes cells that their growth is stimulated by
the presence of the tumor such as T-cells. In this model, we assume
that all cell populations are killed by chemotherapy drug with different
ratios.

Several resources such as bone marrow and lymph nodes could
create a constant source for immune cells, s, which is shown in the first
term of Eq. (1). The second term is the saturation function with the
positive parameters ρ and α, that represents the immune cells are
stimulated by tumor cells. The competition among immune and tumor
cells, that cause the loss of immune cells is shown in the third term. The
forth term shows that Immune cells die at the natural death rate d1. The
fifth term is the loss of immune cells due to the drug injection.

The growth of tumor cell population is shown in the first term of Eq.
(2) as the logistic term with growth rate r1 and maximum carrying
capacity b1

−1. The logistic growth term models the competition between
proliferation and death rate [30]. The competition among immune and
tumor cells, that cause the loss of tumor cells is shown in the second
term. The competition among tumor and normal cells, that cause the
loss of tumor cells is shown in the third term. The loss of tumor cells
due to the drug injection is shown in the forth term.

The growth of normal cell population is shown in the first term of
Eq. (3) as the logistic term with growth rate r2 and maximum carrying
capacity b2

−1. The competition among normal and tumor cells, that
cause the loss of normal cells is shown in the second term. The third
term is the loss of normal cells due to the drug injection.

The effect of chemotherapy on killing cell populations are repre-
sented by a1, a2 and a3, [31]. The values of different parameters are
listed in Table 1.

3. Robust adaptive control

In this section, a robust adaptive control strategy is proposed for
the third order nonlinear model described in Section 2. The objective of
this controller is that the tumor, normal and immune cells track their
desired values. To achieve this goal, the volume of the biological cells
(tumor, normal and immune) are compared with their desired values,
the error signals are created, and the drug dosages are recommended
accordingly. Moreover, to make the control system robust against

Table 1
Nominal parameters of the chemotherapy model [31].

Parameter Description Value

a1 Fractional normal cell kill by chemotherapy 0.05
a2 Fractional tumor cell kill by chemotherapy 0.15
a3 Fractional immune cell kill by chemotherapy 0.1

b1
−1 Tumor cell carrying capacity 1.0

b2
−1 Normal cell carrying capacity 1.0

c1 Fractional tumor cell kill by immune cells 1.0
c2 Fractional immune cell kill by tumor cells 0.5
c3 Fractional tumor cell kill by normal cells 1.0
c4 Fractional normal cell kill by tumor cells 1.0
d1 Death rate of immune cells 0.2
r1 Tumor cell growth rate 1.5
r2 Normal cell growth rate 1.0
s Steady source rate for immune cells 0.33
α Immune threshold rate 0.3
ρ Immune response rate 0.01
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