
Improving package structure of object-oriented

software using multi-objective optimization and

weighted class connections

Amarjeet *, Jitender Kumar Chhabra

Department of Computer Engineering, NIT Kurukshetra, Haryana, India

Received 13 February 2015; revised 21 July 2015; accepted 3 September 2015

Available online 2 November 2015

KEYWORDS

Multi-objective optimiza-

tion;

Package restructuring;

Modularization;

Weighting scheme;

Maintenance

Abstract The software maintenance activities performed without following the original design

decisions about the package structure usually deteriorate the quality of software modularization,

leading to decay of the quality of the system. One of the main reasons for such structural deterio-

ration is inappropriate grouping of source code classes in software packages. To improve such

grouping/modular-structure, previous researchers formulated the software remodularization prob-

lem as an optimization problem and solved it using search-based meta-heuristic techniques. These

optimization approaches aimed at improving the quality metrics values of the structure without

considering the original package design decisions, often resulting into a totally new software mod-

ularization. The entirely changed software modularization becomes costly to realize as well as dif-

ficult to understand for the developers/maintainers. To alleviate this issue, we propose a multi-

objective optimization approach to improve the modularization quality of an object-oriented sys-

tem with minimum possible movement of classes between existing packages of original software

modularization. The optimization is performed using NSGA-II, a widely-accepted multi-

objective evolutionary algorithm. In order to ensure minimum modification of original package

structure, a new approach of computing class relations using weighted strengths has been proposed

here. The weights of relations among different classes are computed on the basis of the original

package structure. A new objective function has been formulated using these weighted class rela-

tions. This objective function drives the optimization process toward better modularization quality

simultaneously ensuring preservation of original structure. To evaluate the results of the proposed

approach, a series of experiments are conducted over four real-worlds and two random software

applications. The experimental results clearly indicate the effectiveness of our approach in

* Corresponding author.

E-mail addresses: amarjeetnitkkr@gmail.com (Amarjeet),

jitenderchhabra@nitkkr.ac.in (J.K. Chhabra).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences (2017) 29, 349–364

King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com

http://dx.doi.org/10.1016/j.jksuci.2015.09.004
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.09.004&domain=pdf
mailto:amarjeetnitkkr@gmail.com
mailto:jitenderchhabra@nitkkr.ac.in
http://dx.doi.org/10.1016/j.jksuci.2015.09.004
http://dx.doi.org/10.1016/j.jksuci.2015.09.004
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.09.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


improving the modularization quality of existing package structure by doing very small movement

of classes between packages of original software modularization.

� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The quality of the software modularization has a major impact

on many software system quality parameters such as under-
standability and maintainability (Tonella, 2001; Praditwong
et al., 2011). For Object-oriented software systems, the modu-
larization is largely dependent on classes. Classes are nothing

but collection of data and associated methods. Generally for
small software system, the classes are considered as modules,
however for large and complex systems, it has been reported

that a set of collaborating classes (i.e. packages) can be a better
module of system organization than a class (Gupta and
Chhabra, 2009) and bigger software systems are generally

designed and developed by using these modularization criteria.
As the software system evolves over the time, addition,

removal and modification of classes influence the original soft-
ware modularization in an adverse manner. It has been

observed that due to short deadlines, developers often do not
follow the original package design rules during maintenance
for early completion of the work leading to modular structure

deterioration (Marcio et al., 2014). As a result, the original
modularization structure gets modified to the extent that it
looses its structural quality due to sub-optimal placement of

classes in different packages (Gui and Scott, 2006). Software
maintenance is a continuous ongoing phenomenon but the
deteriorated structure quality makes the maintenance difficult

and negatively affects the software evolution (Mitchell and
Mancoridis, 2006). Hence, the re-modularization of a software
system becomes essential whenever the system quality gets
degraded to a point from where the further evolution is not

feasible within permissible time and cost. The software remod-
ularization problem has been solved by many researchers in
the past by formulating it as a search-based optimization prob-

lem and solved it using meta-heuristic techniques (Mitchell,
2002; Mahadavi et al., 2003; Patel et al., 2009; Abdeen et al.,
2009, 2013; Cui and Chae, 2011; Praditwong et al., 2011;

Barros, 2012).
Most of the search-based remodularization approaches

improve the software structure by optimizing coupling and

cohesion criteria (Mahadavi et al., 2003; Praditwong et al.,
2011; Barros, 2012). These approaches improved the coupling
and cohesion in absolute terms, but the newly suggested pack-
age modularization solution usually became so complex and

different from the original one, that it would be hardly accept-
able to the software maintainer (Marcio et al., 2014). Such
methods can be useful when system requires complete over-

hauling. Such a situation comes once in a while, but not during
initial/regular maintenance. At initial/regular maintenance,
system needs to be re-modularized with an improved modular

structure with less restructuring cost. Hence, the quality crite-
ria need to be modeled in such a way, so that it can drive opti-
mization process with preservation of the original package
modularization. In literature, some researchers (Abdeen

et al., 2009, 2013; Bavota et al., 2014) have tried to address

these problems by controlling the optimization process using
some constraints. The authors (Abdeen et al., 2009, 2013)
improved the package structure by improving the package

coupling, package cohesion and package cyclic dependencies
as a single and multi-objective optimization problem. They
controlled the optimization process by applying the constraints

on movement of the classes among packages. However, defin-
ing such constraints is not easy and maintainers must have a
deep insight of the original design decisions of software mod-

ularization. In most of the cases the maintainers are not the
developers of the original modularization (Bavota et al.,
2014). In such situations finding the constraints that can drive
the optimization process toward design decision of original

modularization becomes very difficult. Instead of optimizing
through constraints, another approach has been proposed
recently by Bavota et al. (2014) where the involvement of

end-user becomes compulsory. Their approach is based on
structural and semantic dependencies. They controlled the
remodularization process by putting the software end-users

in the every iteration for requesting the feedback. In this
method an end-user must have thorough understanding of
design decision of original software modularization, which is
again not feasible practically most of the times. Hence it can

be stated that importance of original structure of the software
plays an important role in the process of remodularization, but
existing methods of its inclusion in the optimization process

are highly person-specific, and availability of such persons is
always a limitation of such approaches. So there is an immense
need to incorporate the characteristics of original modular-

structure, preferably without necessity of individuals having
clear insight of original design. This paper attempts to solve
this issue and the proposed approach is able to include the

original structure characteristics from the source code, without
any need of well-aware end-user/original developer.

This paper presents a multi-objective optimization
approach for improving the existing package structure of an

object-oriented system aiming at preserving the original design
decision of software modularization. To this contribution, the
optimization process is controlled by objective functions which

are formulated in terms of newly proposed weighted relations
that reflect the nature of original design decision. The weights
of each type of existing relations are calculated in terms of

locality (intra and inter relations) of that relation in original
software modularization. Further, these weighted relations
are used to calculate overall connection strength among pair

of classes. This connection strength helps in keeping the opti-
mization process around original software modularization.

The multi-objective formulation includes package cohesive-

ness index, package connectedness index, intra-package con-

nection density and package size index as the objective
functions. To solve the multi-objective optimization, we used
Non-Dominated Sorting Genetic Algorithm (NSGA II) (Deb

et al., 2002) a widely-accepted multi-objective evolutionary
algorithm. We considered this algorithm, in particular, because

350 Amarjeet, J.K. Chhabra

http://creativecommons.org/licenses/by-nc-nd/4.0/


Download English Version:

https://daneshyari.com/en/article/4960357

Download Persian Version:

https://daneshyari.com/article/4960357

Daneshyari.com

https://daneshyari.com/en/article/4960357
https://daneshyari.com/article/4960357
https://daneshyari.com

