Journal of King Saud University — Computer and Information Sciences (2016) 28, 364-380

King Saud University

Journal of

King Saud University —
Computer and
Information Sciences

i e ol o Journal of King Saud University —
agsudlloll

King SauaUniversiy Computer and Information Sciences

www.ksu.edu.sa
www.sciencedirect.com

Change impact analysis for software product lines () couven
Jihen Maazoun ™", Nadia Bouassida *, Hanéne Ben-Abdallah”

E MIR@CL Laboratory, Sfax University, Tunisia
® Abdulaziz University, Jeddah, Saudi Arabia

Received 5 June 2015; revised 9 January 2016; accepted 13 January 2016
Available online 30 March 2016

KEYWORDS Abstract A software product line (SPL) represents a family of products in a given application
Software product line; domain. Each SPL is constructed to provide for the derivation of new products by covering a wide
Feature model; range of features in its domain. Nevertheless, over time, some domain features may become obso-
Model evolution; lete with the apparition of new features while others may become refined. Accordingly, the SPL
Change impact management must be maintained to account for the domain evolution. Such evolution requires a means for
managing the impact of changes on the SPL models, including the feature model and design. This
paper presents an automated method that analyzes feature model evolution, traces their impact on
the SPL design, and offers a set of recommendations to ensure the consistency of both models. The
proposed method defines a set of new metrics adapted to SPL evolution to identify the effort needed
to maintain the SPL models consistently and with a quality as good as the original models. The
method and its tool are illustrated through an example of an SPL in the Text Editing domain.
In addition, they are experimentally evaluated in terms of both the quality of the maintained

SPL models and the precision of the impact change management.
© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

Lo IntrodUuCtiono oo 365
2. Related Work 366
2.1, SPL modeling. oo e 366
2.1.1. Feature model 366
2.1.2. Our UML profile for software product lines. 367

* Corresponding author.
E-mail addresses: jihenmaazoun@gmail.com (J. Maazoun), Nadia.Bouassida@isimsf.rnu.tn (N. Bouassida), HBenAbdallah@kau.edu.sa
(H. Ben-Abdallah).

Peer review under responsibility of King Saud University.

FLSEVIER Production and hosting by Elsevier

http://dx.doi.org/10.1016/.jksuci.2016.01.005
1319-1578 © 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.01.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jihenmaazoun@gmail.com
mailto:Nadia.Bouassida@isimsf.rnu.tn
mailto:HBenAbdallah@kau.edu.sa
http://dx.doi.org/10.1016/j.jksuci.2016.01.005
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.01.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

Change impact analysis for software product lines 365
2.2. SPL evolution levels and operationsttt 367
2.2.1. Feature model refactoring.t 367

2.2.2. Feature model refinement 368

2.2.3. Feature model arbitrary eVOIULION ottt e e 368

2.3. Existing works on SPL change impact analysis 368

2.4. Other SPL evOolution ISSUES o vttt et e e e e e e e e e e 368

3. Measuring the effort needed for evolutionary SPL change. 369
4. Feature model and design level change impact analysis. 370
4.1. Inter-feature model changes. 370
41,10 Add featureo 370

4.1.2. Remove featureo 370

4.1.3. Rename feature 371

4.1.4. Move featureo 371

4.1.5. Split feature.o 371

4.2. Intra-feature model Changes. 371
4.2.1. Addelement 372

422, Remove Clement.o 372

4.2.3. Rename element.t e 372

4.3, Impact classification 372

S Case StUAY . . . o 373
6. Evaluation 374
6.1. SPL quality evaluation after evolution it e e 375

6.2. Change impact evaluationt 377

7. ConClUSION oo e e e 378
Referenceso 379

1. Introduction

A software product line (SPL) (Clements and Northrop, 2001)
represents a set of software-intensive systems that share a com-
mon set of features and software assets pertinent to a specific
application domain. Besides the common product features in
a domain, an SPL also describes variability points that can
be used to derive new products in the SPL domain. Thanks
to the predictive and organized reuse of its features and soft-
ware assets, the SPL promises decreased time to market and
improved software development productivity.

Even though an SPL covers several software variants, the
inevitable evolution of these latter induces an evolution of
the SPL itself. Product variants evolve to meet new require-
ments introduced by new technologies, new business goals,
or modified customer preferences. Such product variants’ evo-
lution feeds-back several types of changes on their SPL, e.g.,
the emergence of a new feature, disappearance of an obsolete
feature, structural re-organization of a feature, etc. Managing
the impact of product variants’ evolution on the SPL must
have a means to analyze the effects of a product variant change
on the SPL in terms of change operations to conduct on all of
the assets describing the SPL.

An SPL is often described in terms of a problem space and
a solution space (Seidl et al., 2012). The problem space cap-
tures high-level requirements usually in the form of feature
models, whereas the solution space contains shared assets like
source code, design and test artifacts. Given the tight correla-
tion between both spaces, any change induced by the SPL evo-
lution must be managed in a consistent way in all pertinent
assets. Most of the works dealing with SPL evolution, e.g.,
Pleuss et al. (2012), Passos et al. (2013), Seidl et al. (2012),
Neves et al. (2011), Laguna and Crespo (2013), and Xue
(2011), focus on the evolution of feature model-oriented

SPL, but they do not address the impact of a change on the
consistency of the various assets of the SPL, e.g., the design
and the products’ code. In addition, none of the existing works
analyzes the cost of a change in terms of the effort estimated to
handle the change; such change impact analysis is important,
for instance, to examine the value added by a change.

Because features are more structured and coarse-grained
than requirements, they facilitate the understanding and trace-
ability of an SPL evolution (Passos et al., 2013). In fact, Passos
et al. (2013) argue that changes ought to be managed in a
feature-oriented manner. We agree with this argument since
we believe that features can be the blueprints where evolution
can be managed and from where it can be traced back to the
design, code and other assets. Hence, managing SPL evolution
implies, first, managing change at the problem space level (i.e.,
the feature model) and, then, tracing these changes to the solu-
tion space (i.e., the design).

To achieve this feature-oriented SPL evolution strategy, two
questions must be addressed: how to keep the consistency
between the feature model and the remaining assets, particularly
the design? and how to measure the effort needed in the manage-
ment of each change impact? To be addressed, both questions
require an explicit specification of the relationship between the
SPL feature model and its design. To do so, we use our previ-
ously proposed approach which extracts the feature model from
source code and specifies it usinga UML profile (Maazoun et al.,
2013). Unlike existing SPL feature model extraction approaches
(e.g., Acher et al. (2013), Lozano (2011), Ziadi et al. (2012),
Al-Msie’Deen et al. (2012), and Paskevicius et al. (2012)), ours
integrates the semantic aspect of the product variants. More-
over, it describes the SPL design with a UML profile that repre-
sents the SPL variation points enriched with information
extracted from the feature model. The enrichment provides for
the traceability between the feature model and the design.

Download English Version:

https://daneshyari.com/en/article/4960382

Download Persian Version:

https://daneshyari.com/article/4960382

Daneshyari.com

https://daneshyari.com/en/article/4960382
https://daneshyari.com/article/4960382
https://daneshyari.com

