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a b s t r a c t 

This work studies the optimal pricing strategy in a discrete-time Geo/Geo/1 queuing system under the 

sojourn time-dependent reward. We consider two types of pricing schemes. The first one is called the 

ex-post payment scheme where the server charges a price that is proportional to the time a customer 

spends in the system, and the second one is called ex-ante payment scheme where the server charges 

a flat price for all services. In each pricing scheme, a departing customer receives the reward that is 

inversely proportional to his/her sojourn time. The server should make the optimal pricing decisions in 

order to maximize its expected profits per time unit in each pricing scheme. This work also investigates 

customer’s equilibrium joining or balking behavior under server’s optimal pricing strategy. Numerical ex- 

periments are also conducted to validate our analysis. 

© 2017 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Researches about the economic analysis of queuing systems can 

go back at least to the pioneering work of Naor [1] who inves- 

tigated customer’s equilibrium and socially optimal strategies in 

the observable M/M/1 queuing system with the concise reward- 

cost structure. Naor’s [1] work has been extended by many authors 

[2–15] . Recently, several studies have extended this topic to the 

discrete-time queuing system. Ma et al [16] analyzed customers’ 

equilibrium behaviors in the discrete-time Geo/Geo/1 queue with 

multiple vacations, and Wang et al [17] considered the discrete- 

time Geo/Geo/1 queue with the single working vacation. Yang et al 

[18] also studied customers’ balking strategies in the discrete-time 

Geo/Geo/1 with server breakdowns and repairs. However, to the 

best of our knowledge, there are relatively few works on pricing 

problems in the discrete-time queue. Although Ma and Liu [19] in- 

sisted that the pricing problems in the discrete-time Geo/Geo/1 

queue are analyzed, in fact, the results of Ma and Liu [19] are about 

those in the continuous-time M/M/1 queue. 

In this work, we analyze the pricing strategies and cus- 

tomers’ equilibrium joining/balking behaviors in the discrete-time 

Geo/Geo/1 queuing system under two types of pricing structures. 

In the first structure, the server charges a price that is proportional 

to the sojourn time (waiting time plus service time), called the 
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ex-post payment (EPP) scheme. In the second structure, however, 

the server charges a flat price for all the services, which means 

the server implements the ex-ante payment (EAP) scheme. In each 

pricing structure, the server should make the optimal pricing deci- 

sions in order to maximize its expected profits per time unit. For 

more information on the EPP and EAP schemes, refer to [19–22] . 

By the way, most of previous studies assume that the reward 

that a departing customer receives after being served is set to a 

constant value. In the service system, however, the service qual- 

ity is adversely affected by the system congestion. Demand growth 

in the queuing system can have two diametrically opposite effects 

on the server’s pricing strategy: one is a price hike, as is common 

in economics; the other is an increase in congestion, which dete- 

riorates the service quality and thus implies a lower price. A key 

performance measure of the system congestion is customer’s so- 

journ time. It is a matter of course that rewards, which can be 

expressed by customer satisfaction, are influenced by the sojourn 

time. We frequently observe that the longer the sojourn time, the 

lower the customer satisfaction and the lower system operational 

profit. For example, if the line is too long, customers can give up 

and go to another service system. Long queues have a negative im- 

pact on customer service satisfaction, which causes service aban- 

donment. This is an opportunity cost for the system, which has a 

negative impact on profitability. For this reason, we assume that 

the reward is adversely proportional to customer’s sojourn time. 
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The remainder of this paper is organized as follows. In 

Section 2 , the mathematical model under consideration is de- 

scribed. In Section 3 , we analyze customer’s equilibrium join- 

ing/balking behavior and server’s profit maximization strategy un- 

der the EPP and EAP schemes, respectively. Section 4 deals with 

numerical experiments where we investigate trends of the optimal 

prices of the EPP and EAP schemes according to various input val- 

ues. 

2. Model description 

This work considers a queuing system with following features. 

The arrival process of potential customers is the Bernoulli process 

with a probability of p ( 0 < p < 1 ) . Whenever each potential cus- 

tomer arrives at the system, they decide to join or balk depend- 

ing on the specific joining probability, denoted by q ( 0 ≤ q ≤ 1 ). 

It is well known that the decomposition property holds in the 

Bernoulli process; therefore, the effective arrival process follows 

the Bernoulli process with a probability of pq . Service times are 

independent and identically distributed random variables (RVs) fol- 

lowing geometric distribution with a probability of μ ( 0 < μ < 1 ). 

For analytical simplicity, we assume followings: i) arrival and ser- 

vice processes are mutually independent; ii) services are provided 

on a first-in-first-out basis; iii) the decision to join or balk is irre- 

vocable; iv) the stable system should satisfy pq < μ. 

Let πn be the stationary queue length distribution. According to 

Takagi [23] , πn is given by 

π0 = 1 − pq 

μ
and πn = 

μ − pq 

μ(1 − μ) 

(
pq (1 − μ) 

μ(1 − pq ) 

)n 

, n ≥ 1 . 

(1) 

Let L and ω respectively denote the expected queue length 

and the expected sojourn time. L is then given by L = 

∑ ∞ 

n =1 n πn = 

pq (1 − pq ) / (μ − pq ) . By Little’s formula, ω = (1 − pq ) / (μ − pq ) . 

Due to the fact that μ < 1 , we have ω > 1 . 

Let R denote the reward that each customer expect to receive 

before being served. As mentioned in Section 1 , the sojourn time 

have a negative effect on the reward. After the completion of a ser- 

vice, therefore, each customer is assumed to receive a reward R/ω
( R > 0 ). There exists a waiting cost C ( C > 0 ) per time unit when 

the customer stays in the system. To make the model nontrivial, 

we assume the condition that Rμ > C/μ, which ensures that the 

expected reward exceeds the expected cost for the customer find- 

ing the empty system. 

3. Pricing analysis 

3.1. EPP scheme 

We first investigate the EPP scheme, where the server charges 

a price that is proportional to customer’s sojourn time. Let K t 

( K t ≥ 0 ) and P t denote the price charged by the server and the 

expected server profit per time unit, respectively. Then, the ex- 

pected utility U t has the following relation: U t = R/ω − K t ω − Cω. If 

U t equals zero at customer’s equilibrium, we have R = ( K t + C) ω 

2 . 

At customer’s equilibrium, therefore, the price can be expressed in 

terms of customer’s joining probability, denoted by q t 

K t = 

R (μ − p q t ) 
2 − C (1 − p q t ) 

2 

(1 − p q t ) 
2 

. (2) 

Substituting (2) into P t = p q t K t ω, we have 

P t = 

p q t 
(
R (μ − p q t ) 

2 − C (1 − p q t ) 
2 
)

(μ − p q t )(1 − p q t ) 
. (3) 

We now establish the following non-linear programming (NLP) 

problem to maximize P t with respect to q t : 

max 
q t 

P t = 

p q t 
(
R (μ−p q t ) 

2 −C (1 −p q t ) 
2 
)

(μ−p q t )(1 −p q t ) 

st 
0 ≤ q t ≤ 1 , 

p q t < μ. 

(4) 

In (4) , we want to maximize the expected server profit per time 

unit. The first constraint implies that customer’s joining probabil- 

ity should be bounded between 0 and 1, and the second one guar- 

antees the system to be stable. We now introduce the following 

lemma: 

Lemma 1. The optimization problem in ( 4 ) is a convex maximization 

problem (CMP). 

Proof. According to the definition of the convex maximization 

[24] , if the objective function can be proved concave in the fea- 

sible region and the set of constraints can be proved convex, the 

maximization problem is a CMP. 

The constraint in (4) are all real-valued linear functions; there- 

fore, the set of constraints is convex. The second derivative of the 

objective function in (4) can be expressed as 

∂ 2 P t 
∂q 2 t 

= −
2 p 2 (1 − μ) 

[
R (μ − p q t ) 

3 + Cμ(1 − p q t ) 
3 
]

(1 − p q t ) 
3 
(μ − p q t ) 

3 
. (5) 

From the constraints in (4) , (μ − p q t ) 
3 > 0 and (1 − p q t ) 

3 > 0 . 

Thus, ∂ 2 P t /∂q 2 t < 0 in the feasible region. Hence, we conclude that 

the objective function P t should be strictly concave and (4) is a 

CMP. �
Since the optimization problem in (4) is a CMP, the Lagrange 

multiplier method can be used to find the optimal solution. Ob- 

serving (4) , we can find that all constraints are inequality con- 

straints. Thus, Karush-Kuhn-Tucker conditions can be used to gen- 

eralize the method of Lagrange multiplier. However, the explicit 

form of the optimal q t , denoted by q ∗t , is too long and complicated. 

We instead introduce another way of obtaining the value of q ∗t . 
If the objective function is strictly concave in the feasible region, 

the unique local optimal solution obtained by using the Newton 

method becomes the unique global optimal solution. For the de- 

tailed Newton method, refer to Boyd and Vandenberghe [24] . Then, 

the optimal price K 

∗
t is expressed as 

K 

∗
t = 

R (μ − pq ∗t ) 
2 − C (1 − pq ∗t ) 

2 

(1 − pq ∗t ) 
2 

. (6) 

Based on the above analysis, we could give the following theo- 

rem: 

Theorem 1. Under the EPP scheme, if 0 ≤ q t ≤ 1 , there exists a 

unique equilibrium where customers join the queue with a probability 

of pq ∗t . 

Proof. Let ω( q t ) = (1 − p q t ) / (μ − p q t ) . As mentioned, the ex- 

pected utility has the following relation: U t = R/ω( q t ) − ( K t + 

C) ω( q t ) . We distinguish three cases: 

Case 1: R/ω(0) ≤ ( K t + C) ω(0) . In this case, even if no other 

customer joins, the expected benefit of a customer who joins is 

non-positive. Therefore, the strategy of joining with probabilities 

q ∗t = 0 is an equilibrium strategy and no other equilibrium is pos- 

sible. Moreover, in this case, not joining is a dominant strategy. 

Case 2: R/ω(1) ≥ ( K t + C) ω(1) . In this case, even if all poten- 

tial customers join, they all enjoy a non-negative benefit. There- 

fore, the strategy of joining with probability q ∗t = 1 is an equilib- 

rium strategy and no other equilibrium is possible. Moreover, in 

this case, joining is a dominant strategy. 
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