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a  b  s  t  r  a  c  t

This  paper  explores  the  synergies  between  evolutionary  computation  and  synthetic  biology,  develop-
ing  an  in silico  evolutionary  system  that  is inspired  by the  behavior  of  bacterial  populations  living
in  continuously  changing  environments.  This  system  creates  a  3D  environment  seeded  with  a  simu-
lated  population  of  bacteria  that  eat,  reproduce,  interact  with  each  other  and  with  the  environment
and  eventually  die.  This  provides  a 3D  framework  implementing  an evolutionary  process.  The  subject
of the  evolution  is  each  bacterium’s  internal  process,  defining  its  interactions  with  the  environment.
The  evolutionary  goal  is the  survival  of  the population  under  successive,  continuously  changing  envi-
ronmental  conditions.  The  key  advantage  of  this  bacterial  evolutionary  system  is  its  decentralized,
asynchronous,  parallel  and self-adapting  general-purpose  evolutionary  process.  We describe  this  sys-
tem and present  the  results  of  an  application  to the  evolution  of  a bacterial  population  that  learns
how  to  predict  the  presence  or  absence  of food  in the environment  by  analyzing  three  input  sig-
nals  from  the  environment.  The  resulting  populations  successfully  evolve  by  continuously  improving
their  fitness  under  different  environmental  conditions,  demonstrating  their  adaptability  to  a  fluctuating
medium.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Natural computing is a highly interdisciplinary field, composed
of research areas covering topics ranging from biology, chemistry
and physics to the development of mathematical algorithms and
software applications [1].  Some of these areas focus on different
aspects of nature as a source of inspiration for developing compu-
tational techniques [2–5]. Another approach to natural computing
engineers biological systems in an attempt to understand nature
by defining its constituent parts [6–8]. These engineered biologi-
cal modules are then used to build fully fledged purpose-specific
biological circuits [9–11]. Evolutionary computation and synthetic
biology are disciplines that are representative of these two different
approaches to natural computing. They come together to create a
research field that applies evolutionary techniques to automatically
develop in silico synthetic biological circuits [12].

Different evolutionary computation techniques can be used for
this purpose. Insofar as DNA and RNA strands can be easily rep-
resented as fixed-size individuals of the population of a genetic
algorithm, this tool is usually applied to automatically generate
DNA and RNA structures that have a targeted behavior [13–18].
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The evolution of complex biological circuits, such as regulatory
networks involving genes, RNA and proteins that interact with each
other through chemical reactions, requires the development of ad
hoc evolutionary algorithms with codification methods to deal with
variable-size individuals [19–25].  These evolutionary approaches
are specially designed to meet the constraints of their applica-
tion domain, but none have a crossover mechanism to evolve the
population. In these cases the crossover operator suffers the clo-
sure problem [26]: it can generate invalid offspring from valid
individuals. Consequently the crossover operator is replaced by
a controlled mutation operator. This operator randomly performs
certain specific mutations within the genome of the individuals in
the population.

Additionally, these techniques apply a two-step evolutionary
computation process to generate biological circuits, as is usual
practice for automatically building intelligent systems [27]. An evo-
lutionary technique is first used to create a specific intelligent
system that learns to solve a fixed problem, the system is then
installed in the application domain to solve a real-world problem. If
the domain is updated with new information or the problem speci-
fications change, the evolutionary program has to be re-run in order
to adapt the intelligent system to the new conditions. This offline
evolution philosophy clashes with continuously changing execu-
tion environment of biological systems, whose distributedness is
more consistent with asynchronous and parallel embodied evo-
lutionary algorithm execution [28,29].  The EVE system [30] takes
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Table  1
Table of symbols used throughout the paper.

Symbol Meaning Symbol Meaning

E Environment r Radius
B̂  Bacterial population bp Biological process
Ŝ  Set of environmental signals ε Energy
X Set  of states rp Response protein
R  Environmental resource (nutrients) f Fitness
t  Time ırefill Resource refill rate
Bt Bacterial population at time t ıdecay Resource decay rate
St Environmental signals at time t ısignal Signal decay rate
[R]t Resource concentration at time t ıε Energy decay rate
Xt State at time t �immaturity Immaturity threshold
ϕ  Resources function �death Death threshold
b  Bacterium �quorum Quorum sensing threshold
s  Signal ˘death Death probability
c  Center

this point into account and proposes an evolutionary framework to
continuously self-adapt a population of individuals to a changing
environment. Even so, it still includes centralized control mecha-
nisms to maintain a fixed-size population and does not provide a
physical environment to simulate its behavior.

This research takes inspiration from the behavior of bacterial
populations [31] in order to create a bacterial evolutionary system
that overcomes these drawbacks. This system creates a 3D environ-
ment seeded with a simulated variable-size bacterial population.
The system simulates how bacteria move [32], grow [33], repro-
duce and die [34] as they do in nature [35], and they are allowed
to interact with the environment and with each other. They exe-
cute an asynchronous, decentralized and parallel grammar-guided
genetic program that evolves their internal biological processes.
The population self-controls its size using an unsupervised and
decentralized quorum sensingbased regulatory system [36]. Quo-
rum sensing is an intercellular communication mechanism used
by bacteria to shift between two states, representing a low and
high population density respectively [37]. Communication is done
by producing and sensing acyl homoserine lactones (AHL) signal
molecules, also called autoinducers.

This bacterial evolutionary system is a general-purpose tech-
nique, because grammar-guided genetic programming (GGGP)
assures that any intelligent system whose constraints can be cod-
ified using a context-free grammar can implement the biological
processes of these bacteria [27]. The bacterial evolutionary system
evolves variable-size individuals and, given that GGGP solves the
closure problem [38], it is complete, because it includes initializa-
tion, selection and replacement operations – via cellular division
and death –, as well as a conjugation operator that implements
a grammatical crossover [39] by means of which bacteria share
genetic material via conjugation [40].

Irrespective of the evolved intelligent system, the bacterial
evolutionary system’s goal is to assure the survival of the bacte-
rial population through constant adaptation to the changing 3D
environment. Population behavior improves continuously through
self-adaptation to the constant changes taking place in its sur-
rounding habitat. In this paper we present an application of
this system, where bacteria implement a population of Bayesian
networks [41] that manage their internal biological processes.
These biological processes receive three environmental signals, s0,
s1 and s2, and output the expression level of a response protein
that regulates the amount of resource that each bacterium har-
vests from the medium. The amount of existing environmental
resource is regulated by time-delayed XOR and XNOR operations
performed upon s0, s1 and s2. This way bacteria evolve in order
to learn how to predict the presence or absence of the resource
by sensing and analyzing the quantity of s0, s1 and s2. The BSim

framework, developed by the Bristol Centre for Complexity Sci-
ences [42], has been used to build and simulate the 3D environment.
BSim is a modelling tool designed to allow for the study of bacterial
populations.

This paper is organized as follows. Section 2 describes the simu-
lation of the 3D environment and the bacterial population. Section
3 explains the components of the evolutionary procedure. Section 4
details the application problem and the results obtained by the evo-
lutionary system, and Section 5 expounds the conclusions. Symbols
used throughout this paper are listed in Table 1.

2. Using bacteria as inspiration

2.1. Simulating the habitat

In order to simulate the natural environment of bacteria, we
define a biologically inspired 3D dynamic environment as a 4-tuple
E = (B̂, Ŝ, X, ϕ), where:

1. B̂ is a set called bacterial population.
2. Ŝ = {s0, s1, ..., ss} is a finite set whose elements are called envi-

ronmental signals.
3. X  ⊆ P(B̂) × P(Ŝ) × N  × N  is the set of states of system E, where

P(A) denotes, for each set A, the power set (given by all subsets
of A) and N  denotes the set of natural numbers, that is, each state
is a vector of size 4.

4. ϕ : X  → {0, 1} is a binary function called resources function.

We assume that the following properties hold for the set of states
X:

1. If (B, S, [R], t) ∈ X, then for each q ∈ {1, 2, . . .,  t − 1} there exists
(B′, S′, [R′], q) ∈ X.

2. If (B1, S1, [R]1, t1), (B2, S2, [R]2, t2) ∈ X  are two  states with t1 = t2,
then B1 = B2, S1 = S2, [R]1 = [R]2. In other words, there cannot be
two  different states with the same last entry.

In view of the above properties, the set of states can be construed
as a finite or numerable sequence X = {Xt : t = 1, 2, . . . , m},  where
m ∈ N  is a fixed number (eventually, m =+ ∞)  and each state is asso-
ciated with a unique value t ∈ {1, 2, . . .,  m}.

In the sequel we  assume that t represents the variable time in
states Xt = (Bt, St, [R]t). Bt and St represent, respectively, the sub-
sets of the bacterial population and environmental signals that are
present at time t. [R]t is called the concentration of environmental
resources of Xt. In this way, the set X  describes the evolution of the
given 3D dynamic environment.
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