
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 112 (2017) 643–652

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International
10.1016/j.procs.2017.08.110

10.1016/j.procs.2017.08.110

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2017, 6-8 September 2017, Marseille, France

Engineering Polynomial-Time Solutions for
Automatic Web Service Composition

Paul Diaca

aFaculty of Computer Sicence, Alexandru Ioan Cuza University, General Berthelot, 16, Iasi, 700483, Romania

Abstract

Web Service Composition (WSC) is the task of creating some new functionality over a repository of independent resources, Web
Services in particular. Services are described by their input and output parameters that are matched if they have the same textual
name in service definition for the classic, simplified version of WSC. The problem requires finding an ordered list of services such
that all input parameters are available starting from the initially user known parameters and revealing all user required parameters.
In this paper we propose a proven efficient polynomial-time solution to Automatic WSC combined with a heuristic for shortening
the solution length: the number of Web Services in the composition. The algorithm is tested against several benchmarks of tests and
is compared with previous solutions that use AI Planning, revealing tremendous improvements. Two benchmarks are well-known
in WSC literature but due to lack of high run time variations over their tests, a new benchmark is created with a special designed
generator described in the paper. The new tests reveal more meaningful information.
c© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: automatic web service composition; polynomial time; heuristic; planning; benchmark

1. Introduction

Web Services are present in many modern software architectures and they behave as independent components that
generally solve only one precise task. More complex systems can take use of them only in a composed manner,
chaining or branching them with respect to the services requirements1. Several standardization languages have been
implemented to enable this, such as WS-BPEL2, BPEL for Semantic Web Services (BPEL4SWS)3, OWL-S4 and
more. Enabling the automation of the process can be a complex task from multiple perspectives, especially in future
where the number of publicly available Web Services is expected to have a steady growth. The focus in this paper is
on classical Automatic WSC problem where a repository of Web Services and a single user request are known. Each
service consists of its input and output parameters and the user request has the same structure: the initially parameters
known by the user and the parameters to be found. For the user request we need to find a list of services with the

∗ Corresponding author. Tel.: +04-075-215-3555;
E-mail address: paul.diac@info.uaic.ro

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000

International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2017, 6-8 September 2017, Marseille, France

Engineering Polynomial-Time Solutions for
Automatic Web Service Composition

Paul Diaca

aFaculty of Computer Sicence, Alexandru Ioan Cuza University, General Berthelot, 16, Iasi, 700483, Romania

Abstract

Web Service Composition (WSC) is the task of creating some new functionality over a repository of independent resources, Web
Services in particular. Services are described by their input and output parameters that are matched if they have the same textual
name in service definition for the classic, simplified version of WSC. The problem requires finding an ordered list of services such
that all input parameters are available starting from the initially user known parameters and revealing all user required parameters.
In this paper we propose a proven efficient polynomial-time solution to Automatic WSC combined with a heuristic for shortening
the solution length: the number of Web Services in the composition. The algorithm is tested against several benchmarks of tests and
is compared with previous solutions that use AI Planning, revealing tremendous improvements. Two benchmarks are well-known
in WSC literature but due to lack of high run time variations over their tests, a new benchmark is created with a special designed
generator described in the paper. The new tests reveal more meaningful information.
c© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: automatic web service composition; polynomial time; heuristic; planning; benchmark

1. Introduction

Web Services are present in many modern software architectures and they behave as independent components that
generally solve only one precise task. More complex systems can take use of them only in a composed manner,
chaining or branching them with respect to the services requirements1. Several standardization languages have been
implemented to enable this, such as WS-BPEL2, BPEL for Semantic Web Services (BPEL4SWS)3, OWL-S4 and
more. Enabling the automation of the process can be a complex task from multiple perspectives, especially in future
where the number of publicly available Web Services is expected to have a steady growth. The focus in this paper is
on classical Automatic WSC problem where a repository of Web Services and a single user request are known. Each
service consists of its input and output parameters and the user request has the same structure: the initially parameters
known by the user and the parameters to be found. For the user request we need to find a list of services with the

∗ Corresponding author. Tel.: +04-075-215-3555;
E-mail address: paul.diac@info.uaic.ro

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.08.110&domain=pdf

644 Paul Diac / Procedia Computer Science 112 (2017) 643–652
Paul Diac / Procedia Computer Science 00 (2017) 000–000

property that each service in the list can be called: its input parameters are known from the previous services or from
the user request and all user required parameters are learned. The problem’s solution is a satisfying composition.
Solution length is taken into account, shorter solutions are desirable if multiple exist.

The paper is organized as follows: section 1 contains this introduction and section 2 describes the formal definition
of the problem. Section 3 shortly presents the previously planning based solutions for WSC. Section 4 presents our
evaluation plan: existing benchmarks and their limitations together with a new test generator that is more relevant to
running time variations. The proposed solution in section 5 describes our polynomial-time algorithm for WSC with
the required data structures and enhanced with section 6’s heuristics to shorten the solution length. Last section 7
discusses the experimental results with the conclusion and possible future work.

2. Automatic WSC problem definition

Automatic Web Service Composition can be abstracted to the problem described below. The problem is defined
using a graph-like structure with complex nodes and the restrictions on the node path that represents the solution in
Web Service Composition.

Node. A node n is defined by a pair 〈I,O〉 where I and O are sets of parameters. I is the input parameter set for the
node and O is the output parameter set. We will write them as n.I and n.O.

Parameter set. The set of all parameters that appear in all nodes as input or output; also called the universe. If R
is the set of all nodes then it is

⋃
n∈R

n.I ∪ n.O.

Initial node. A special node Init that specifies the initially known parameters. Init.I should conventionally be ∅
and i.O the set of initially know parameters. This way the user request input parameters can be represented as a regular
node.

Goal node. A special node Goal that defines the parameters that need to be found. Goal.O should be ∅ since it
produces no information, just specifies that Goal.I is the set of desired parameters. Informally it is the node that needs
to be reached.

Parameter matching. Let P be a set of parameters and n a node. We say that the set P matches the node n if n.I ⊆
P. We further define P ⊕ n = P ∪ n.O as the union of n.O and P under the constraint of P matching n.

Chained matching. If P is a set of parameters and 〈n1, n2, ...nk〉 is an ordered list of nodes, we say that P ⊕ n1 ⊕
n2... ⊕ nk is a chain of matching nodes over the set P if:

ni.I ⊆
(
P ∪
(i−1⋃

j=1

n j.O
))
, ∀ i = 1..k

In words, a chain of matching nodes is a list of nodes for which the input of each node is included in the union of
the output sets of each previous nodes and the initial set of parameters.

Node Composition problem. Given a set of nodes R and two initial and goal nodes Init and Goal find a matching
list nodes 〈Init, n1, n2, ...nk,Goal〉 with ni ∈ R, ∀ i = 1..k.

Clearly, each node can be interpreted as a Web Service so that Node Composition is equivalent to WSC. One Web
Service can be executed only if we know all its input parameters. Therefore one valid WSC is translated into node
chain matching.

Web Service Composition Example. Suppose that as part of a text processing phase we need to replace the pred-
icate of a sentence with a synonym of the verb that constitutes the predicate. The replacement has to be made in the
correct conjugation. However, the service that provides synonyms takes as input not a word but a word sense and and
there is also a word sense disambiguation service. More precisely, considering the web services:

getWordS ense
in =
{
textualWord, sentence

}
out =
{
wordSense

} getS ynonim
in =
{
wordSense

}
out =
{
word
} getPredicate

in =
{
sentence

}
out =
{
textualWord

}

getVerbProp
in =
{
textualWord

}
out =
{person, tense,
number, mood

} con jugateVerb
in =
{word, person, tense,

number, mood

}

out =
{
conjugatedVerb

}

Paul Diac / Procedia Computer Science 00 (2017) 000–000

The user request has the initial parameter sentence and wants to obtain conjugatedVerb, the synonym of the verb
in the correct form, so it can further replace it in the sentence. We need to call the services in such an order that all
input parameters are known at the time of a service call, as shown in Figure 1.

Figure 1: Composition example: arrows show the source of each input parameter of services

in=∅
userReq In
out={sentence}

in={sentence}
getPredicate

out={textualWord}

sentence

in={textualWord,
sentence}

getWordSense
out={wordSense}

se
nte

nc
e

in={wordSense}
getSynonim

out={word}

in={textualWord}
getVerbProp

out={person, tense,
number, mood}

textualWord

wordSense

in={word, person,
tense, number, mood}

conjugateVerb
out={conjugatedVerb}

textualWord

in={conjugatedVerb}
userReq Out

out=∅

person, tense,

number, mood

word

conjugatedVerb

3. Planning-based solutions

Most of existing solutions to Automatic WSC problem use AI Planning, since it is straightforward to reduce WSC
instances to planning instances. For example, Zou et al5 proposes an efficient solution that uses AI Planning, together
with a comprehensive analysis of the performance relative to previous solutions. Our solution presented in sections 5
and 6 is compared with this approach over all benchmarks. The reduction of WSC to planning is described in more
details below, and is the same as in Zou et al5 and the one implemented for testing. For solving the transformed
planning instances both GraphPlan6 and Fast-Forward7 planners are used and compared in terms of running time and
solution length. In order to do this, we need to convert between three formats: WSDL (Web Services Description
Language)2, STRIPS8 used by GraphPlan and PDDL9 used by Fast-Forward. Shortly, the planning languages use:
objects, predicates, initial and goal states and actions. One action is dentified by a precondition and effect, both of
which are described by a first order logic formula. An action can be applied if the precondition is true and after the
effect becomes true.

The relation with the Planning domain is based on the following reductions: each Web Service is translated into
one action in planning problem definition. The service input and output parameters are translated into the precondition
and effect of that action. The only predicate used is the have predicate defined over a set of constants each modeling
one parameter. The predicate appears only non-negated in both all preconditions and all effects. Initial and goal states
define the non-negated have predicate over the initially known and respectively required parameters. For example,

Download English Version:

https://daneshyari.com/en/article/4960643

Download Persian Version:

https://daneshyari.com/article/4960643

Daneshyari.com

https://daneshyari.com/en/article/4960643
https://daneshyari.com/article/4960643
https://daneshyari.com

