
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 110 (2017) 250–257

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.06.092

10.1016/j.procs.2017.06.092

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect	
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

The 12th International Conference on Future Networks and Communications
(FNC 2017)

A Memory Efficient Pattern Matching Scheme for Regular
Expressions

Yeim-Kuan Chang* and Ching-Hsuan Shih
Department of Computer Science and Information Engineering National Cheng Kung University

Tainan, 701, Taiwan

Abstract

Many malicious packets are common and spread over the Internet in recent years when the scale of Internet traffic grows at a
rapid speed. Thus, the regular expression matching in Network Intrusion Detection System (NIDS) that supervises network
activities needs to be very fast and consume small memory. In this paper, we propose a memory efficient regular expression
matching algorithm called Failureless Segmented Finite Automata (FSFA) with an acceptable searching speed. In FSFA, We
eliminate Kleene closures by using additional data structures to reduce a large amount of states. We further reduce the transitions
by using default state compression technique. Our performance results implemented on a PC software environment show that our
scheme only needs 1% of states needed in DFA and 2 to 22% of states needed in JFA.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Regular expression; DFA; State explosion; Network Intrusion Detection System

1. Introduction

Since the Internet becomes extremely popular as well as universal and the traffic of the Internet is growing very
fast, more and more malicious attacks and viruses sprawl over the Internet every day. Therefore, network security
systems such as firewall, Network Intrusion Detection System (NIDS) and antivirus software are developed to avoid
our computers from being attacked over the Internet. Antivirus software and NIDS such as Snort1 and Bro2 examine
the payloads of Internet packets, known as Deep Packet Inspection (DPI), with predefined rules.

* Corresponding author. Tel.: +886-6-275-7575 ; fax: +886-6-274-7076 .

E-mail address: ykchang@mail.ncku.edu.tw

Available online at www.sciencedirect.com

ScienceDirect	
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

The 12th International Conference on Future Networks and Communications
(FNC 2017)

A Memory Efficient Pattern Matching Scheme for Regular
Expressions

Yeim-Kuan Chang* and Ching-Hsuan Shih
Department of Computer Science and Information Engineering National Cheng Kung University

Tainan, 701, Taiwan

Abstract

Many malicious packets are common and spread over the Internet in recent years when the scale of Internet traffic grows at a
rapid speed. Thus, the regular expression matching in Network Intrusion Detection System (NIDS) that supervises network
activities needs to be very fast and consume small memory. In this paper, we propose a memory efficient regular expression
matching algorithm called Failureless Segmented Finite Automata (FSFA) with an acceptable searching speed. In FSFA, We
eliminate Kleene closures by using additional data structures to reduce a large amount of states. We further reduce the transitions
by using default state compression technique. Our performance results implemented on a PC software environment show that our
scheme only needs 1% of states needed in DFA and 2 to 22% of states needed in JFA.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Regular expression; DFA; State explosion; Network Intrusion Detection System

1. Introduction

Since the Internet becomes extremely popular as well as universal and the traffic of the Internet is growing very
fast, more and more malicious attacks and viruses sprawl over the Internet every day. Therefore, network security
systems such as firewall, Network Intrusion Detection System (NIDS) and antivirus software are developed to avoid
our computers from being attacked over the Internet. Antivirus software and NIDS such as Snort1 and Bro2 examine
the payloads of Internet packets, known as Deep Packet Inspection (DPI), with predefined rules.

* Corresponding author. Tel.: +886-6-275-7575 ; fax: +886-6-274-7076 .

E-mail address: ykchang@mail.ncku.edu.tw

2 Author name / Procedia Computer Science 00 (2015) 000–000

Pattern matching is the act of checking a given sequence of tokens for the presence of some patterns in the rule
sets. Because of its expressive power, regular expression has been used commonly in current rule sets. Deterministic
Finite Automata (DFA) is a method that implements regular expression matching. Using DFA for regular expression
matching only needs to visit one state when processing a single input character and achieves very fast matching
speed but suffers from the well-known state explosion problem due to Kleene closures such as “.*” and “[^\n]*”
appearing in the complex rules. Therefore, recently, there are many schemes which are devoted to address the state
explosion problem and reserve acceptable searching speeds comparing to DFA.

In this paper, we focus on processing complicated regular expressions that contain Kleene closures and propose a
new memory efficient scheme to address the state explosion problem. And, we compress the transition table using
default state compression technique.

The rest of this paper is organized as follows. In section 2, we introduce some related works and background
about regular expression matching. In section 3, we present our proposed scheme in details and show how we
improve memory consumption of DFA. We will illustrate the data structures and the searching procedure of our
scheme. Section 4 shows the experimental results. Finally, we conclude this paper in the last section.

2. Related Work

There are many regular expression search engines6,7,8,17,18,19 proposed in the literature. Current hardware-based
methods are usually implemented on FPGA9,10,11, TCAM12,13,14, ASIC and so on. The most recent two schemes,
XFA3,4 and JFA5, are devoted to solving the problem of excessive memory usage in DFA.

Extended Finite Automata (XFA)3,4 addresses the state explosion problem by erasing most Kleene closures (such
as “.*” and “[^\n]*”) and repetitions (such as “a{20}”) in the rule sets. XFA divides each rule into several sub-rules
using Kleene closures as delimiters and builds one DFA for all sub-rules from all the original rules. A rule is
matched if its corresponding sub-rules are accepted in the right order. Thus, for each sub-rule, it has its own history
bit to record whether the sub-rule has been already matched. And, for the case of repetitions, XFA use one counter
for each repetition to record the number of times that the repeated character appears. If the value of the counter is
satisfied for the repetition, the case of the repetition is accepted.

The following examples explain the regular expression matching of XFA. Fig. 1 shows how XFA recognizes rule
“ab.*cd”. Consider text “abzcd” as the input string. When the second input character ‘b’ arrives, state 3 is reached
and the bit associated to sub-rule “ab” is set. Then, when the input character ‘d’ is sent to XFA, final state 4 is
reached on condition that the bit corresponding to sub-rule “ab” is set. Thus, the acceptance of rule “ab.*cd” is
declared.

JFA5 uses state variables to handle Kleene closures (such as “.*” and “[^\n]*”) and address the problem of state
explosion. JFA5 is able to solve the overlapping character problem that XFA can solve. As motivated by the
overlapping character problem and the forbidden character problem detailed below, we will proposed the a novel
scheme to solve these two problem along with a memory efficient transition table compression scheme.

XFA3,4 expands DFA with a small amount of additional memory to remember various types of information for
dealing with the state explosion problem caused by Kleene closures. However, XFA still has some limitations that
make the reduction of states inefficient.

Let p (prefix) and s (suffix) be the portion of a rule that precedes and follows a Kleene closure, respectively, as in
pattern “p.*s”. In XFA, when a prefix is matched, the corresponding bit is set to record the match of the prefix.
When a suffix’s final state is arrived, the acceptance is declared only if the bit associated to the corresponding prefix
is set. However, this scheme does not support two cases: (i) the prefix and the suffix overlap, e.g. rule “ab.*bc”, and
(ii) forbidden characters of the string in Kleene closure also exist in the suffix, e.g., rules of the form “p[^c]*s”,
where p is a prefix, s is a suffix, and forbidden character ‘c’ appears in s, like “ab[^c]*cd”. In order to understand
the reason why XFA can’t support the two cases, we consider XFA for rule “ab.*bc” as shown in Fig. 2(a). Input
string “abc” will wrongly match rule “ab.*bc” because prefix “ab” and suffix “bc” overlap in character ‘b’. For the
case that forbidden characters appear in the suffix, see XFA for rule “ab[^c]*cd” as illustrated in Fig. 2(b). Input
string “abcd” will erroneously miss the match if forbidden character ‘c’ resets the bit.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.06.092&domain=pdf

 Yeim-Kuan Chang et al. / Procedia Computer Science 110 (2017) 250–257 251

Available online at www.sciencedirect.com

ScienceDirect	
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

The 12th International Conference on Future Networks and Communications
(FNC 2017)

A Memory Efficient Pattern Matching Scheme for Regular
Expressions

Yeim-Kuan Chang* and Ching-Hsuan Shih
Department of Computer Science and Information Engineering National Cheng Kung University

Tainan, 701, Taiwan

Abstract

Many malicious packets are common and spread over the Internet in recent years when the scale of Internet traffic grows at a
rapid speed. Thus, the regular expression matching in Network Intrusion Detection System (NIDS) that supervises network
activities needs to be very fast and consume small memory. In this paper, we propose a memory efficient regular expression
matching algorithm called Failureless Segmented Finite Automata (FSFA) with an acceptable searching speed. In FSFA, We
eliminate Kleene closures by using additional data structures to reduce a large amount of states. We further reduce the transitions
by using default state compression technique. Our performance results implemented on a PC software environment show that our
scheme only needs 1% of states needed in DFA and 2 to 22% of states needed in JFA.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Regular expression; DFA; State explosion; Network Intrusion Detection System

1. Introduction

Since the Internet becomes extremely popular as well as universal and the traffic of the Internet is growing very
fast, more and more malicious attacks and viruses sprawl over the Internet every day. Therefore, network security
systems such as firewall, Network Intrusion Detection System (NIDS) and antivirus software are developed to avoid
our computers from being attacked over the Internet. Antivirus software and NIDS such as Snort1 and Bro2 examine
the payloads of Internet packets, known as Deep Packet Inspection (DPI), with predefined rules.

* Corresponding author. Tel.: +886-6-275-7575 ; fax: +886-6-274-7076 .

E-mail address: ykchang@mail.ncku.edu.tw

Available online at www.sciencedirect.com

ScienceDirect	
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

The 12th International Conference on Future Networks and Communications
(FNC 2017)

A Memory Efficient Pattern Matching Scheme for Regular
Expressions

Yeim-Kuan Chang* and Ching-Hsuan Shih
Department of Computer Science and Information Engineering National Cheng Kung University

Tainan, 701, Taiwan

Abstract

Many malicious packets are common and spread over the Internet in recent years when the scale of Internet traffic grows at a
rapid speed. Thus, the regular expression matching in Network Intrusion Detection System (NIDS) that supervises network
activities needs to be very fast and consume small memory. In this paper, we propose a memory efficient regular expression
matching algorithm called Failureless Segmented Finite Automata (FSFA) with an acceptable searching speed. In FSFA, We
eliminate Kleene closures by using additional data structures to reduce a large amount of states. We further reduce the transitions
by using default state compression technique. Our performance results implemented on a PC software environment show that our
scheme only needs 1% of states needed in DFA and 2 to 22% of states needed in JFA.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Regular expression; DFA; State explosion; Network Intrusion Detection System

1. Introduction

Since the Internet becomes extremely popular as well as universal and the traffic of the Internet is growing very
fast, more and more malicious attacks and viruses sprawl over the Internet every day. Therefore, network security
systems such as firewall, Network Intrusion Detection System (NIDS) and antivirus software are developed to avoid
our computers from being attacked over the Internet. Antivirus software and NIDS such as Snort1 and Bro2 examine
the payloads of Internet packets, known as Deep Packet Inspection (DPI), with predefined rules.

* Corresponding author. Tel.: +886-6-275-7575 ; fax: +886-6-274-7076 .

E-mail address: ykchang@mail.ncku.edu.tw

2 Author name / Procedia Computer Science 00 (2015) 000–000

Pattern matching is the act of checking a given sequence of tokens for the presence of some patterns in the rule
sets. Because of its expressive power, regular expression has been used commonly in current rule sets. Deterministic
Finite Automata (DFA) is a method that implements regular expression matching. Using DFA for regular expression
matching only needs to visit one state when processing a single input character and achieves very fast matching
speed but suffers from the well-known state explosion problem due to Kleene closures such as “.*” and “[^\n]*”
appearing in the complex rules. Therefore, recently, there are many schemes which are devoted to address the state
explosion problem and reserve acceptable searching speeds comparing to DFA.

In this paper, we focus on processing complicated regular expressions that contain Kleene closures and propose a
new memory efficient scheme to address the state explosion problem. And, we compress the transition table using
default state compression technique.

The rest of this paper is organized as follows. In section 2, we introduce some related works and background
about regular expression matching. In section 3, we present our proposed scheme in details and show how we
improve memory consumption of DFA. We will illustrate the data structures and the searching procedure of our
scheme. Section 4 shows the experimental results. Finally, we conclude this paper in the last section.

2. Related Work

There are many regular expression search engines6,7,8,17,18,19 proposed in the literature. Current hardware-based
methods are usually implemented on FPGA9,10,11, TCAM12,13,14, ASIC and so on. The most recent two schemes,
XFA3,4 and JFA5, are devoted to solving the problem of excessive memory usage in DFA.

Extended Finite Automata (XFA)3,4 addresses the state explosion problem by erasing most Kleene closures (such
as “.*” and “[^\n]*”) and repetitions (such as “a{20}”) in the rule sets. XFA divides each rule into several sub-rules
using Kleene closures as delimiters and builds one DFA for all sub-rules from all the original rules. A rule is
matched if its corresponding sub-rules are accepted in the right order. Thus, for each sub-rule, it has its own history
bit to record whether the sub-rule has been already matched. And, for the case of repetitions, XFA use one counter
for each repetition to record the number of times that the repeated character appears. If the value of the counter is
satisfied for the repetition, the case of the repetition is accepted.

The following examples explain the regular expression matching of XFA. Fig. 1 shows how XFA recognizes rule
“ab.*cd”. Consider text “abzcd” as the input string. When the second input character ‘b’ arrives, state 3 is reached
and the bit associated to sub-rule “ab” is set. Then, when the input character ‘d’ is sent to XFA, final state 4 is
reached on condition that the bit corresponding to sub-rule “ab” is set. Thus, the acceptance of rule “ab.*cd” is
declared.

JFA5 uses state variables to handle Kleene closures (such as “.*” and “[^\n]*”) and address the problem of state
explosion. JFA5 is able to solve the overlapping character problem that XFA can solve. As motivated by the
overlapping character problem and the forbidden character problem detailed below, we will proposed the a novel
scheme to solve these two problem along with a memory efficient transition table compression scheme.

XFA3,4 expands DFA with a small amount of additional memory to remember various types of information for
dealing with the state explosion problem caused by Kleene closures. However, XFA still has some limitations that
make the reduction of states inefficient.

Let p (prefix) and s (suffix) be the portion of a rule that precedes and follows a Kleene closure, respectively, as in
pattern “p.*s”. In XFA, when a prefix is matched, the corresponding bit is set to record the match of the prefix.
When a suffix’s final state is arrived, the acceptance is declared only if the bit associated to the corresponding prefix
is set. However, this scheme does not support two cases: (i) the prefix and the suffix overlap, e.g. rule “ab.*bc”, and
(ii) forbidden characters of the string in Kleene closure also exist in the suffix, e.g., rules of the form “p[^c]*s”,
where p is a prefix, s is a suffix, and forbidden character ‘c’ appears in s, like “ab[^c]*cd”. In order to understand
the reason why XFA can’t support the two cases, we consider XFA for rule “ab.*bc” as shown in Fig. 2(a). Input
string “abc” will wrongly match rule “ab.*bc” because prefix “ab” and suffix “bc” overlap in character ‘b’. For the
case that forbidden characters appear in the suffix, see XFA for rule “ab[^c]*cd” as illustrated in Fig. 2(b). Input
string “abcd” will erroneously miss the match if forbidden character ‘c’ resets the bit.

Download English Version:

https://daneshyari.com/en/article/4960819

Download Persian Version:

https://daneshyari.com/article/4960819

Daneshyari.com

https://daneshyari.com/en/article/4960819
https://daneshyari.com/article/4960819
https://daneshyari.com

