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Abstract
What does the informational complexity of dynamical networked systems tell us about intrin-
sic mechanisms and functions of these complex systems? Recent complexity measures such as
integrated information have sought to operationalize this problem taking a whole-versus-parts
perspective, wherein one explicitly computes the amount of information generated by a net-
work as a whole over and above that generated by the sum of its parts during state transitions.
While several numerical schemes for estimating network integrated information exist, it is in-
structive to pursue an analytic approach that computes integrated information as a function of
network weights. Our formulation of integrated information uses a Kullback-Leibler divergence
between the multi-variate distribution on the set of network states versus the corresponding
factorized distribution over its parts. Implementing stochastic Gaussian dynamics, we perform
computations for several prototypical network topologies. Our findings show increased informa-
tional complexity near criticality, which remains consistent across network topologies. Spectral
decomposition of the system’s dynamics reveals how informational complexity is governed by
eigenmodes of both, the network’s covariance and adjacency matrices. We find that as the
dynamics of the system approach criticality, high integrated information is exclusively driven
by the eigenmode corresponding to the leading eigenvalue of the covariance matrix, while sub-
leading modes get suppressed. The implication of this result is that it might be favorable for
complex dynamical networked systems such as the human brain or communication systems to
operate near criticality so that efficient information integration might be achieved.
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1 Introduction

Quantifying informational processes of dynamical networked systems has been increasingly
useful as a unique window for probing internal system states and mechanisms that underlie
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observed phenomenological behaviors of many complex systems. Mapping structure-function
relationships in this way by using information theory has paid off for studying both, complex
biological systems such as the brain or engineered systems such as communication networks.
A prominent information-theoretic complexity measure that has shown a recent resurgence of
interest in the wake of consciousness research is integrated information (often denoted as Φ). It
was first introduced in neuroscience as a complexity measure for neural networks, and touted as
a correlate of consciousness [19]. Integrated information Φ is loosely defined as the quantity of
information generated by a network as a whole, due to its causal dynamical interactions, that
is over and above the information generated independently by the disjoint sum of its parts.
As a complexity measure, Φ seeks to operationalize the intuition that complexity arises from
simultaneous integration and differentiation of the network’s structure and dynamics. Integra-
tion results in distributed coordination among nodes, while differentiation leads to functional
specializations, thus enabling the emergence of the system’s collective states. The interplay
between integration and differentiation thus generates information that is highly diversified yet
integrated, creating patterns of high complexity. Following initial proposals [17], [18], [19],
several approaches have been developed to compute integrated information [1], [4], [5], [6], [8],
[9], [11], [13], [14] (see also [2], [15], [16], [20] for other related measures). Some of these were
constructed for networks with discrete states, others for continuous state variables. In this
paper, we will consider stochastic network dynamics with continuous state variables because
this class of networks model many biological as well as communication systems that generate
multivariate time-series signals. We want to study the precise analytic relationship between the
information integrated by these networks and the couplings that parametrize their structure
and dynamics. It turns out that tuning the dynamical operating point of a network near the
edge of criticality leads to a high rate of network information integration and that remains
consistent across network topologies. To explain this phenomenon, we analyze the spectrum
of the network’s dynamics. This reveals that integrated information is coupled to the charac-
teristics of the eigenmodes of the system’s covariance matrix, and in turn these are related to
the eigenvalues of the network’s adjacency matrix. In this paper, we make these relationships
precise.

2 Methods

We consider complex networks with linear multivariate dynamics and Gaussian noise. It follows
that the state of each node is given by a random variable pertaining to a Gaussian distribution.
For many realistic applications, Gaussian-distributed variables are fairly reasonable abstrac-
tions. The state of the network Xt at time t is taken as a multivariate Gaussian variable with
distribution PXt(xt). xt denotes an instantiation of Xt with components xi

t (i going from 1
to n, n being the number of nodes). When the network makes a transition from an initial
state X0 to a state X1 at time t = 1, observing the final state generates information about the
system’s initial state. The information generated equals the reduction in uncertainty regarding
the initial state X0. This is given by the conditional entropy H(X0|X1). In order to extract
that part of the information generated by the system as a whole, over and above that generated
individually by its irreducible parts, one computes the relative conditional entropy given by the
Kullback-Leibler divergence of the conditional distribution PX0|X1=x′(x) of the whole system
with respect to the joint conditional distributions

∏n
k=1 PMk

0|Mk
1=m′ of its irreducible parts [6].

Here Mk
t denotes the state variable of the kth-component of the partitioned system at time t.
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Denoting the Kullback-Leibler divergence of the above quantities as Φ, we have

Φ(X0 → X1 = x′) = DKL

(
PX0|X1=x′

∣∣∣∣
n∏

k=1

PMk
0|Mk

1=m′

)
(1)

where for the partitioned system, the state variablesX0 andX1 can be expressed as formal sums
X0 =

⊕n
k=1 M

k
0 and X1 =

⊕n
k=1 M

k
1 respectively. To have a measure that is independent of

any particular instantiation of the final state x′, we average eq.(1) with respect to final states
to obtain

〈Φ〉 (X0 → X1) = −H(X0|X1) +

n∑
k=1

H(Mk
0|Mk

1) (2)

This is the definition of integrated information that we will use [6]. The state variable at
each time t = 0 and t = 1 follows a multivariate Gaussian distribution X0 ∼ N (x̄0,Σ(X0))
and X1 ∼ N (x̄1,Σ(X1)) respectively. The generative model for this system is equivalent to a
multi-variate auto-regressive process [10]

X1 = A X0 +E1 (3)

where A is the weighted adjacency matrix of the network and E1 is Gaussian noise. Taking
the mean and covariance respectively on both sides of this equation, while holding the residual
independent of the regression variables gives

x̄1 = A x̄0 Σ(X1) = A Σ(X0) AT +Σ(E) (4)

In the absence of any external inputs, stationary solutions of a stochastic linear dynamical
system as in eq.(3) are fluctuations about the origin. Therefore, we can shift coordinates to set
the means x̄0 and consequently x̄1 to the zero. The second equality in eq.(4) is the discrete-time
Lyapunov equation and its solution will give us the covariance matrix of the state variables.
The conditional entropy for a multivariate Gaussian variable was computed in [11]

H(X0|X1) =
1

2
n log(2πe)− 1

2
log [detΣ(X0|X1)] (5)

and depends on the conditional covariance matrix. Substituting in eq.(2) yields

〈Φ〉 (X0 → X1) =
1

2
log

[∏n
k=1 detΣ(Mk

0|Mk
1)

detΣ(X0|X1)

]
(6)

In order to compute the conditional covariance matrix we make use of the identity (proof of
this identity for the Gaussian case was demonstrated in [10])

Σ(X|Y) = Σ(X)−Σ(X,Y)Σ(Y)−1Σ(X,Y)T (7)

Computing Σ(X0,X1) = Σ(X0)AT and using the above identity, we get

Σ(X0|X1) = Σ(X0)−Σ(X0)AT Σ(X1)
−1A Σ(X0)

T (8)

Σ(Mk
0|Mk

1) = Σ(Mk
0)−Σ(Mk

0)AT
∣∣
k
Σ(Mk

1)
−1A

∣∣
k
Σ(Mk

0)
T

(9)

the conditional covariance for the whole system and that for its parts respectively. The variable
Mk

0 refers to the state of the kth node at t = 0 and A
∣∣
k
denotes the (trivial) restriction of the
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