
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 335–344

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.140

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.140 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Parallel Learning Portfolio-based solvers

Tarek Menouer1 and Souheib Baarir1,2

1 Paris Nanterre University
LIP6 Laboratory, CNRS UMR 7606, Paris, France

2 LRDE Laboratory, Kremlin-Bicłtre, France
Tarek.menouer@lip6.fr,Souheib.baarir@lip6.fr

Abstract
Exploiting multi-core architectures is a way to tackle the CPU time consumption when solving SAT-
isfiability (SAT) problems. Portfolio is one of the main techniques that implements this principle. It
consists in making several solvers competing, on the same problem, and the winner will be the first that
answers. In this work, we improved this technique by using a learning schema, namely the Exploration-
Exploitation using Exponential weight (EXP3), that allows smart resource allocations. Our contribution
is adapted to situations where we have to solve a bench of SAT instances issued from one or several
sequence of problems. Our experiments show that our approach achieves good results.

Keywords: Portfolio, SATisfiability boolean, Learning algorithm, Parallelization

1 Introduction
The past few years have seen an enormous progress in SAT solving. Among others, this is due to
evolution of hardware architectures such as multi-core and Many Integrated Cores machines. In this
context, several parallel SAT solvers [2, 12, 21] have been proposed. They are mainly based on two
approaches: Divide-and-Conquer (D&C) and Portfolio.

The principle of the Divide-and-Conquer technique consists in decomposing the search tree in a
set of sub-trees, then assigning each sub-tree to a computing core [12]. The main issue with such an
approach is to ensure a good load balancing between all computing cores [15]. This turns to be a difficult
problem, making the approach highly unstable and behave poorly in practices. On the other hand, the
Portfolio [21] approach, despite its extreme simplicity, gives good results. It consists in making several
solvers in compete on the same problem, the winner will being the one that answers first. The SAT
contests organized over the last few years [23] show the domination of the solvers of this class. In this
work, we’ve improved the efficiency of this approach for solving instances of one and several problems.

Currently, SAT solving is used as a back-end solution engine for several classical problems. Among
others, we site: planning, hardware designing, model-checking, software-checking, theorem proving,
etc. Usually, we have a problem pattern from which several instances are derived and solved inde-
pendently. For example, the generation of a schedule in some organization, where the structure of the

1

This space is reserved for the Procedia header, do not use it

Parallel Learning Portfolio-based solvers

Tarek Menouer1 and Souheib Baarir1,2

1 Paris Nanterre University
LIP6 Laboratory, CNRS UMR 7606, Paris, France

2 LRDE Laboratory, Kremlin-Bicłtre, France
Tarek.menouer@lip6.fr,Souheib.baarir@lip6.fr

Abstract
Exploiting multi-core architectures is a way to tackle the CPU time consumption when solving SAT-
isfiability (SAT) problems. Portfolio is one of the main techniques that implements this principle. It
consists in making several solvers competing, on the same problem, and the winner will be the first that
answers. In this work, we improved this technique by using a learning schema, namely the Exploration-
Exploitation using Exponential weight (EXP3), that allows smart resource allocations. Our contribution
is adapted to situations where we have to solve a bench of SAT instances issued from one or several
sequence of problems. Our experiments show that our approach achieves good results.

Keywords: Portfolio, SATisfiability boolean, Learning algorithm, Parallelization

1 Introduction
The past few years have seen an enormous progress in SAT solving. Among others, this is due to
evolution of hardware architectures such as multi-core and Many Integrated Cores machines. In this
context, several parallel SAT solvers [2, 12, 21] have been proposed. They are mainly based on two
approaches: Divide-and-Conquer (D&C) and Portfolio.

The principle of the Divide-and-Conquer technique consists in decomposing the search tree in a
set of sub-trees, then assigning each sub-tree to a computing core [12]. The main issue with such an
approach is to ensure a good load balancing between all computing cores [15]. This turns to be a difficult
problem, making the approach highly unstable and behave poorly in practices. On the other hand, the
Portfolio [21] approach, despite its extreme simplicity, gives good results. It consists in making several
solvers in compete on the same problem, the winner will being the one that answers first. The SAT
contests organized over the last few years [23] show the domination of the solvers of this class. In this
work, we’ve improved the efficiency of this approach for solving instances of one and several problems.

Currently, SAT solving is used as a back-end solution engine for several classical problems. Among
others, we site: planning, hardware designing, model-checking, software-checking, theorem proving,
etc. Usually, we have a problem pattern from which several instances are derived and solved inde-
pendently. For example, the generation of a schedule in some organization, where the structure of the

1

This space is reserved for the Procedia header, do not use it

Parallel Learning Portfolio-based solvers

Tarek Menouer1 and Souheib Baarir1,2

1 Paris Nanterre University
LIP6 Laboratory, CNRS UMR 7606, Paris, France

2 LRDE Laboratory, Kremlin-Bicłtre, France
Tarek.menouer@lip6.fr,Souheib.baarir@lip6.fr

Abstract
Exploiting multi-core architectures is a way to tackle the CPU time consumption when solving SAT-
isfiability (SAT) problems. Portfolio is one of the main techniques that implements this principle. It
consists in making several solvers competing, on the same problem, and the winner will be the first that
answers. In this work, we improved this technique by using a learning schema, namely the Exploration-
Exploitation using Exponential weight (EXP3), that allows smart resource allocations. Our contribution
is adapted to situations where we have to solve a bench of SAT instances issued from one or several
sequence of problems. Our experiments show that our approach achieves good results.

Keywords: Portfolio, SATisfiability boolean, Learning algorithm, Parallelization

1 Introduction
The past few years have seen an enormous progress in SAT solving. Among others, this is due to
evolution of hardware architectures such as multi-core and Many Integrated Cores machines. In this
context, several parallel SAT solvers [2, 12, 21] have been proposed. They are mainly based on two
approaches: Divide-and-Conquer (D&C) and Portfolio.

The principle of the Divide-and-Conquer technique consists in decomposing the search tree in a
set of sub-trees, then assigning each sub-tree to a computing core [12]. The main issue with such an
approach is to ensure a good load balancing between all computing cores [15]. This turns to be a difficult
problem, making the approach highly unstable and behave poorly in practices. On the other hand, the
Portfolio [21] approach, despite its extreme simplicity, gives good results. It consists in making several
solvers in compete on the same problem, the winner will being the one that answers first. The SAT
contests organized over the last few years [23] show the domination of the solvers of this class. In this
work, we’ve improved the efficiency of this approach for solving instances of one and several problems.

Currently, SAT solving is used as a back-end solution engine for several classical problems. Among
others, we site: planning, hardware designing, model-checking, software-checking, theorem proving,
etc. Usually, we have a problem pattern from which several instances are derived and solved inde-
pendently. For example, the generation of a schedule in some organization, where the structure of the

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.140&domain=pdf

336	 Tarek Menouer et al. / Procedia Computer Science 108C (2017) 335–344Parallel Learning Portfolio-based solvers Tarek Menouer and Souheib Baarir

problem is the same, and only the constraints between the employees change from one instance to an-
other every day, week and month. The formal verification field could also be cited as example: in this
case, the objective is to prove some property on some model/software. Here, we have to instantiate the
problem for several parameters of the model/software while keeping the same global problem’s struc-
ture. Each instance is then converted into a SAT problem, then solved using a Portfolio. In its classical
form, a Portfolio model will, iteratively, run several solvers for each derived instance. Then, for each
internal solver, the number of allocated cores is fixed statically at the beginning of the process. However,
we can show with a set of simple experiments that for a set of instances of the same problem, there is
almost always a solver that performs better than the others for solving the majority of instances. The
best solver is not necessary the best one for solving all instances of the problem. Changing the problem
will only change the best solver, but never the global observation. Furthermore, the statical allocation of
cores in a Portfolio will eventually lead to an underutilization of the abilities of the underlying solvers.

To overcome this drawback, we propose a new Portfolio model based on Exploration-Exploitation
using Exponential weights (EXP3) learning algorithm to fix the number of computing cores for each
solver according to previous experimentations. Our Portfolio will predict automatically, with a high
probability, the best number of computing cores for each solver to use in solving a set of instances of the
same problem. Accordingly, the resources are dynamically reallocated and the performances optimized.

The preliminary information pertaining to solving SAT problems and the research work related to
our contribution are presented in section 2. The proposed learning Portfolio model is presented in detail
in section 3. The experiments and results obtained using the proposed Portfolio model are discussed in
section 4. Finally, conclusion and some perspectives are presented in section 5.

2 SAT Solving Context

In this section, we explore some important points in the context of SAT solving. SAT problem is a
propositional formula represented in Conjunctive Normal Form (CNF) [11]. A CNF formula consists of
a conjunction of clauses, each of which consists of a disjunction of literals. A literal is either a boolean
variable xi or its complement ¬xi. A CNF formula can also be viewed as a set of clauses, and each one
can be viewed as a set of literals. When there exists a truth assignment for all variables of the problem,
such that all clauses are satisfied, then the problem is reported SAT. Otherwise, it is reported UNSAT.

Two main classes of approaches have been developed to solve a SAT problem in the sequential
execution, namely incomplete and complete algorithms. Basically, incomplete algorithms try to find
a solution to a SAT problem by adopting a stochastic strategy [24]. They are very efficient when the
problem has a solution, but if the problem is UNSAT, it cannot prove it. Complete algorithms, based
essentially on the well known Conflict-Driven Clause Learning (CDCL) schema [25], are decision pro-
cedures. They explore a decision tree implicitly. The algorithm keeps affecting truth values to variables
until all clauses of the problem are satisfied or a blocking situation is reached (variable is assigned with
a value and its reverse). In this case, a backtrack is operated to some point of the decision tree, and the
value of the variable at that point is revered to explore other branch of the tree. When all branches have
been explored without getting a solution, the problem is decided UNSAT. The effectiveness of this last
approach is due to the large variety of heuristics that have been developed in the last decade: branching
heuristics [20], restarts [14], clause elimination strategies [3], etc.

2.1 Parallel SAT Solving

During the last few decades, different studies have been dedicated to parallel SAT solving. In this
context, two main approaches are widely accepted: Divide-and-Conquer and Portfolio.

2

Parallel Learning Portfolio-based solvers Tarek Menouer and Souheib Baarir

The Divide-and-Conquer approach, based on a search space splitting, has two major challenges.
(1) Choosing the partition variables: for a given large SAT instance with hundreds of thousands of
variables it is difficult to find the most relevant set of variables to divide the search space, and (2)
load balancing: for some sub-problems, it is easier to prove (un)satisfiability than others. Since the
time needed to prove (un)satisfiability for the sub-problems cannot be predicated, the work cannot be
balanced prior to search. Therefore, dynamic work stealing is expected to balance the work between
computing cores. Without such procedure, some processors might quickly become idle, while others
take a long time to solve their sub-problems. As examples of solvers that implement this approach we
can cite (without being exhaustive): PSatz [16], GrADSAT [10], MiraXT [17] and Treengeling [8]. This
approach is applied only for one solver using one search algorithm. In the literature, several solvers exist
and each one is better than others for solving a specific problem. To enjoy this variety, another approach
exists called Portfolio. The Portfolio approach is much simpler in its concept. The principle consists
to execute in parallel several solvers on the same problem. These solvers can implement the same
algorithm or different ones. In the first case, the solvers will differ by their parametrisations. To each
solver a fix amount of resources is allocated. The first successful implementation of this approach was
proposed in the solver ManySAT [13]. Other extensions follow, as Glucose-update [2], Peneople [1],
Plingeling [8], etc. Despite its simplicity, the last SAT contests (http://www.satcompetition.org)
show that Portfolio dominates the competitions and outperforms the pure Divide-and-Conquer approach.

It is worth noting that many hybrid solvers appeared. They tried to combine these approaches to get
the best of the two worlds. In this context, we can cite: c-sat [21], SAT4J// [18], etc. These solvers got
mitigated success with respect to the one obtained with pure Portfolio.

2.2 A limit in Portfolio approach
As already mentioned, when running a Portfolio, the number of computing cores allocated to each
(internal) solver is decided and fixed, once for all, at the beginning of the resolution process. Thus, the
resources that are allocated to the solvers that behave poorly (on the treated problem) are clearly not
useful. This drawback is due to the inability to predicate the performances of solvers on the treated
problems, in the general case. However, when we treat several instances of the same problem, this
limitation is reduced. In the context of Constraint Programming (CP), the study of [19] shows that we
can predict the performances of a solver based on previous experimentations for solving one problem
with several instances. Hence, the resources allocation is dynamically adapted.

In this work, we propose a similar approach in the context of SAT. Unlike [19], that is proposed for
CP and based on Linear Reward Inaction (LRI) learning algorithm [22], we investigate the Exploration-
Exploitation using Exponential weights (EXP3) learning algorithm [4], that presents better convergences
properties [9]. Our approach is adapted for solving several instances of one or different problems.

3 Learning Portfolio-based Solvers
Compared to the classical Portfolio-based solvers, where the number of cores assigned to each solver is
fixed, our proposed learning Portfolio adapts, automatically, the number of computing cores assigned to
each solver using the EXP3 learning algorithm which have negligible overhead on the overall system.
EXP3 is a popular algorithm for adversarial multi-armed bandits, suggested and analysed in this setting
by [5]. It has been also widely used in the field of game theory [6]. Each time the game is repeated,
players must choose a strategy to play and they perceive at the end a reward. The goal is to update
the choice of strategies using a learning algorithm to improve the rewards. The algorithm relies on two
vectors, namely the probability vector π, and the weight vector ω, that are updated dynamically and
realize the learning schema.

3

Download	English	Version:

https://daneshyari.com/en/article/4960964

Download	Persian	Version:

https://daneshyari.com/article/4960964

Daneshyari.com

https://daneshyari.com/en/article/4960964
https://daneshyari.com/article/4960964
https://daneshyari.com/

