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Abstract
A current trend in high-performance computing is to decompose a large linear algebra problem
into batches containing thousands of smaller problems, that can be solved independently, before
collating the results. To standardize the interface to these routines, the community is developing
an extension to the BLAS standard (the batched BLAS), enabling users to perform thousands
of small BLAS operations in parallel whilst making efficient use of their hardware. We discuss
the benefits and drawbacks of the current batched BLAS proposals and perform a number
of experiments, focusing on a general matrix-matrix multiplication (GEMM), to explore their
affect on the performance. In particular we analyze the effect of novel data layouts which,
for example, interleave the matrices in memory to aid vectorization and prefetching of data.
Utilizing these modifications our code outperforms both MKL1 and CuBLAS2 by up to 6 times
on the self-hosted Intel KNL (codenamed Knights Landing) and Kepler GPU architectures, for
large numbers of double precision GEMM operations using matrices of size 2× 2 to 20× 20.
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1 Introduction

Over the past few decades there has been a tremendous amount of community effort targeting
the design and implementation of efficient linear algebra software. The main focus of this
drive has been to solve larger problems in less time. As a result, numerous libraries have been
designed to take advantage of advances in computer architecture and exploit the parallelism

1https://software.intel.com/en-us/intel-mkl
2http://docs.nvidia.com/cuda/cublas
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both within a single node (using hardware accelerators), and between nodes (communicating
using MPI, for example).

In an attempt to utilize highly parallel computing resources more efficiently, there is a current
trend towards splitting large linear algebra problems into thousands of smaller subproblems that
can be solved concurrently [2]. One example of this is given by multifrontal solvers for sparse
linear systems [7]. Many popular linear algebra libraries such as Intel MKL and NVIDIA
CuBLAS have begun to provide limited support for this approach but no complete set of linear
algebra routines operating on batches of small matrices is available.

The solution to this problem is to develop a new standard set of routines for carrying
out linear algebra operations on batches of small matrices, building on the well-known Basic
Linear Algebra Subproblems (BLAS) standard [5], [6], [10]. The idea behind the batched BLAS
(BBLAS) is to perform multiple BLAS operations in parallel on many small matrices, making
more efficient use of the hardware than a simple OpenMP for loop would allow. For example,
if we consider a general matrix-matrix multiplication (GEMM) operation over a batch of N
matrices then we would like to compute, in parallel,

Ci ← αiAiBi + βiCi, i = 1 : N. (1)

In this example we might keep the sizes of the matrices and the values of αi and βi constant
throughout the entire batch or allow them to vary, depending upon the application that we
have in mind.

One particular application which can benefit dramatically from performing many small ma-
trix multiplications in parallel is deep learning: the batched GEMM functionality in vendor
libraries is already being utilized in popular machine learning libraries such as TensorFlow [1]
and Theano [4]. Further examples of applications where the solution of many small problems
are required include domain decomposition [3], the rendering of 3D graphics in web browsers [8],
metabolic networks [9], astrophysics [12], matrix-free finite element methods [11], and the so-
lution of separable elliptic equations [14].

Currently, libraries that implement BBLAS functionality use a relatively simple memory
layout (explained in section 2) which generally gives suboptimal performance. One of our
primary goals in this paper is to investigate a number of potential optimizations to increase
the performance of BBLAS routines for small matrices on modern parallel architectures. We
explore, amongst other things, the effect of different API designs and memory layouts on per-
formance. Currently, there is no standard interface for BBLAS operations and no complete
implementation of batched BLAS routines is available. Intel MKL has support for batched
GEMM computation whilst NVIDIA CuBLAS supports batched GEMM and triangular solve
(TRSM), plus some batched LAPACK routines; but these libraries do not share the same API.

The remainder of this article is organized as follows. In section 2 we outline the different APIs
for BBLAS and perform some experiments to compare their associated overheads. Section 3
contains discussion and experiments to determine the effect that the memory layout has on the
performance of BBLAS operations and the transfer to and from hardware accelerators, which
are an important consideration when designing an efficient API. In section 4 we focus on the
performance of a novel data layout, which interleaves the batches of matrices in memory, on
both GPUs and the self-hosted Intel KNL. Concluding remarks are given in section 5.

2 Batched BLAS

Two main approaches can be taken to allocate computational resources to batched BLAS oper-
ations. First, we could compute each BLAS operation in order and allocate all available cores
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to each subproblem (which constitutes a fine-grained approach). The second (coarse-grained)
approach allocates a single core to each subproblem, but solves all subproblems in parallel.
When using the second approach all the cores work independently on their own input data.

Clearly, since BBLAS focuses on very small matrix operations, the second approach is to be
preferred. Numerous small matrices can fit in the cache which allows each core to work asyn-
chronously on the subproblems: using fine-grained parallelism forces the cores to synchronise
after each subproblem has been computed.
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Figure 1: Performance of current libraries implementing batched DGEMM on batches of 10, 000
matrices. All the matrices are square with the size denoted on the x-axis. The performance of
MKL and OpenMP are very similar and cannot be easily distinguished.

In Figure 1 we perform a comparison of the current performance that can be obtained
using Intel MKL, an OpenMP for loop, CuBLAS, and MAGMA3 as a reference point for our
future experiments. In particular we show the performance of computing a batch of 10,000
matrix-matrix multiplications in double precision arithmetic (DGEMM). The machine used
in this experiment is a NUMA node with 2 sockets, using Intel Xeon CPU E5-2650 v3 chips
(2.3GHz, Haswell architecture), for a total of 20 cores. The memory is interleaved between the
two processors4. Both CuBLAS and MAGMA are run on a Kepler K40c GPU. Interestingly
the OpenMP loop and Intel MKL have almost identical performance, whilst the two GPU
implementations vary significantly.

All the matrices are chosen to have elements taken from a random uniform distribution
on the interval [0, 1]. Note that throughout all of our experiments we ensure the cache of
each processor is flushed before every invocation of a BBLAS operation, to avoid obtaining
misleading performance results: by neglecting this step we can obtain performance results up
to 4 times faster than those reported here in the cases where the data fits into cache memory.
This is consistent with observations by Whaley and Castaldo [15].

Next, we briefly introduce two competing APIs for performing BBLAS operations being
discussed within the linear algebra community. The APIs make a distinction between batches
where all matrices are of the same size (called a “fixed batch”) and batches where the matrices
can vary in size (a “variable batch”). The reason for this distinction is that, in the fixed batch
case, there are fewer parameters to check before computation can begin. A more detailed

3http://icl.cs.utk.edu/magma/
4Run with “numactl --interleave=all”.
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