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Abstract

Recently a method was presented to compute Lyapunov functions for nonlinear systems with
multiple local attractors [5]. This method was shown to succeed in delivering algorithmically
a Lyapunov function giving qualitative information on the system’s dynamics, including lower
bounds on the attractors’ basins of attraction. We suggest a simpler and faster algorithm
to compute such a Lyapunov function if the attractors in question are exponentially stable
equilibrium points. Just as in [5] one can apply the algorithm and expect to obtain partial
information on the system dynamics if the assumptions on the system at hand are only partially
fulfilled. We give four examples of our method applied to different dynamical systems from the
literature.
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1 Introduction
We consider continuous time systems given by ordinary differential equations
x = f(x), (1.1)

where f € C?(R?, R?) is two-times continuously differentiable. We denote the solution to (1.1)
started at € at time ¢t = 0 by ¢t — @(t,€). A so-called complete Lyapunov functions for the
system (1.1) is a continuous function from the state-space to the real numbers that characterizes
the decomposition of the flow into a gradient-like part and a chain-recurrent part [1, 7, 18]. For
a more accessible overview of this fact, sometimes referred to as the Fundamental Theorem of
Dynamical Systems cf. e.g. [25, 26]. A complete Lyapunov function is decreasing along solution
trajectories on the gradient-like part of the flow and constant on the transitive components of
the chain-recurrent part.
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Whereas there have been numerous suggestions of how to compute Lyapunov function for
systems on a domain containing one stable equilibrium, cf. e.g. [14] for a recent review, there
have been much fewer publications on the numerical construction of Lyapunov functions with
a more complicated chain-recurrent set.

In [5] a method was presented to compute a function V' resembling a complete Lyapunov
function for the system (1.1) on a compact subset of its state-space D C R?, which is al-
lowed to contain multiple attractors. In this method one first computes outer approximations
of the attractors using a graph theoretic method [19, 15] followed by a subsequent numerical
computation of a Massera-like Lyapunov function candidate [24], see [20] for an overview and
classification of the different construction methods. The candidate is then used to parameterize
a continuous and piecewise affine (CPA) Lyapunov function, of which the decrease condition
along solution trajectories can be verified exactly by checking a certain set of linear inequali-
ties. This set of linear inequalities comes from the so-called CPA method to compute Lyapunov
functions, in which linear optimization is used to parameterize a CPA Lyapunov function sat-
isfying these linear inequalities [23, 16, 13]. This method has been adapted to different kinds
of systems like differential inclusions [2] and discrete-time systems [12] and to systems with
different stability properties like ISS stability [21] and control systems [3]. The main advantage
of the CPA method is that it delivers a function that is guaranteed to satisfy the conditions for
a Lyapunov function exactly and its main drawback is that as it involves solving a large linear
programming problem it is not particularly fast. It has therefore been used in combination
with other faster methods to compute Lyapunov functions, the main idea being to compute
a Lyapunov function candidate by the faster method and then use the CPA method to verify
if the candidate indeed satisfies all conditions of a Lyapunov function. For this methodology
cf. e.g. [4, 17, 22, 11] and the paper [5], on which we base this work.

1.1 Notation:

We write vectors x € R? in boldface, ||x|| denotes the Euclidian norm of x, and B.(x) := {y €
R? : ||x —y|| < ¢} is an open ball centered at x with radius e > 0. We write subsets X C R¢
in calligraphic and its interior is denoted by K° and its closure by K. C™ stands for the set
of all m-times continuously differentiable functions, the domain and codomain should always
be obvious from the context. We denote by A(y) := {x € R? : limsup,_, ., ||¢(t,x) — y|| = 0}
the basin of attraction of a stable equilibrium y. A Lipschitz constant L > 0 for f on a set K
is a constant such that ||f(x) — f(y)|| < L||x — y|| for all x,y € K. If there exists a Lipschitz
constant for f on every compact set IC C R?, f is said to be locally Lipschitz.

2 The Method

In [5] one first computes outer approximations F; of the local attractors €;, i = 1,2,..., N,
of the system (1.1) contained in some predefined compact set D C R? of interest. Then one
defines a sufficiently smooth functions v : D — RT (Rt := [0, 00)) such that vy(x) = 0 whenever
X € Ufil Fi and y(x) > 0 otherwise. As shown in [5, Theorem 3.2] the function

T
W) = [ (@l
0
then has a negative orbital derivative

W (x) = i 2200 = W
h—0+

(:vw&yﬂ@iﬂVGCﬁ



Download English Version:

https://daneshyari.com/en/article/4960996

Download Persian Version:

https://daneshyari.com/article/4960996

Daneshyari.com


https://daneshyari.com/en/article/4960996
https://daneshyari.com/article/4960996
https://daneshyari.com

