
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 755–764

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.194

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.194 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

TNT-NN: A Fast Active Set Method for Solving Large

Non-Negative Least Squares Problems

J.M. Myre1, E. Frahm2, D. J. Lilja3, and M.O. Saar4

1 Department of Computer and Information Sciences, University of St. Thomas, Saint Paul, MN
myre@stthomas.edu

2 School of Physics and Astronomy, University of Minnesota, Twin Cities
frahm@physics.umn.edu

3 Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities
lilja@umn.edu

4 Department of Earth Sciences, ETH-Zürich
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Abstract
In 1974 Lawson and Hanson produced a seminal active set strategy to solve least-squares prob-
lems with non-negativity constraints that remains popular today. In this paper we present
TNT-NN, a new active set method for solving non-negative least squares (NNLS) problems.
TNT-NN uses a different strategy not only for the construction of the active set but also for the
solution of the unconstrained least squares sub-problem. This results in dramatically improved
performance over traditional active set NNLS solvers, including the Lawson and Hanson NNLS
algorithm and the Fast NNLS (FNNLS) algorithm, allowing for computational investigations
of new types of scientific and engineering problems.

For the small systems tested (5000 × 5000 or smaller), it is shown that TNT-NN is up to
95× faster than FNNLS. Recent studies in rock magnetism have revealed a need for fast NNLS
algorithms to address large problems (on the order of 105 × 105 or larger). We apply the TNT-
NN algorithm to a representative rock magnetism inversion problem where it is 60× faster than
FNNLS. We also show that TNT-NN is capable of solving large (45000×45000) problems more
than 150× faster than FNNLS. These large test problems were previously considered to be
unsolvable, due to the excessive execution time required by traditional methods.
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1 Introduction

The least squares method produces the solution to a system of linear equations that minimizes
error. Although it can be applied to under-determined systems of equations, it is natural
to apply the least squares method to over-determined systems that cannot be solved in a
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way that will satisfy all of the equations. Since the inception of the least squares method by
Gauss [3], it has been applied in countless scientific, engineering, and numerical contexts. When
investigating physical systems, it is not uncommon for non-negativity constraints to be applied
in order for the system to be physically meaningful. Such constraints have been necessary
in the computational Earth sciences when using nuclear magnetic resonance to determine pore
structures [7], formulating petrologic mixing models [1, 21], and addressing seismologic inversion
problems [28]. This constrained least squares problem is the non-negative least-square (NNLS)
problem, that can be stated as minx||Ax−b||2, such that x ≥ 0, where A is the m×n system of
equations, b is the solution vector of measured data, and x is the vector of obtained parameters
obtained that minimizes the 2-norm of the residual.

Recent problems in rock magnetism have required solving NNLS problems composed of tens
of thousands of variables [8, 26, 25]. Without the restrictions of conventional computer systems
and algorithms, these problems could expand to hundreds of thousands of variables. Direct
spatial solutions to these problems using standard NNLS algorithms have required months of
execution time. Frequency domain methods [15] have been developed as an alternative fast
method to obtain representative solutions, but can produce non-physical artifacts (e.g., Gibbs
phenomenon at sharp interfaces) that violate the non-negativity constraint.

We present TNT-NN, a new (dynamite) active set strategy for solving large NNLS problems.
TNT-NN improves upon prior efforts by incorporating a more aggressive strategy for identifying
the active set of constraints and by using an improved solver to address the unconstrained least
squares sub-problem. We show that TNT-NN dramatically outperforms the present Fast NNLS
active set algorithm on a wide variety of test problems and that the maximum tractable problem
size is extended to the point where previously prohibitive problems are now feasible.

2 Background and related work

Active set strategies for the NNLS problem can be broken down into two basic parts, 1) the
strategy for identifying the “active” non-negativity constraints and 2) the strategy for solving
the unconstrained least squares sub-problem for each choice of the active set of constraints.
These parts are independent of one another and can therefore be discussed independently.

In many applications of NNLS the maximum problem size that can be investigated is limited
by the algorithmic performance and the available computational resources. One of the most
widely used is the 1974 Lawson and Hanson NNLS algorithm [14] (LH-NNLS). Like most
non-negative active set strategies, the LH-NNLS algorithm attempts to find the non-negative
solution by setting some variables to zero. These variables are the active set, because their
non-negativity constraints are “active”. In each iteration, the active set is modified by a single
variable. The active set variables are then ignored and an unconstrained least squares sub-
problem is solved. This conservative approach can yield extremely slow convergence on problems
with many variables. The LH-NNLS algorithm is found in popular software packages such as
Matlab, GNU R [17], and scientific tools for python [12]. LH-NNLS is commonly encountered
in reference literature as the method to solve NNLS problems [2, 20, 27] and its prevalence
continues to inspire new works focused on its optimization [10, 24, 16].

The Fast NNLS (FNNLS) algorithm of Bro and De Jong [6] improves upon LH-NNLS
by by avoiding redundant computations and by allowing an initial “loading” of the active
set. Although the FNNLS algorithm will continue to modify the active set by one variable
per iteration, the total number of iterations that are required for convergence is reduced by
supplying an initial solution that is close to the actual solution. Bro and De Jong report
FNNLS speedups over LH-NNLS ranging from 2x-5x using small real and synthetic test suites.
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Common strategies for solving the unconstrained least squares problem, minx||Ax − b||2,
include the normal equations [9, 11], the pseudoinverse [3], and methods using QR decompo-
sition [23]. Using the normal equations introduces excessive numerical round off error. The
pseudoinverse provides a conceptually simple and numerically accurate approach, but can be
computationally expensive. QR methods are often a good compromise between the normal
equations and pseudoinverse methods, providing acceptable accuracy and numerical efficiency.

3 The design and implementation of the TNT-NN algo-
rithm

The NNLS objective function is a convex quadratic function [4] with linear inequalities as
constraints. The whole NNLS problem, therefore, is convex and any feasible solution can be
found from another feasible point. This provides an algorithmic “license” to take a guess at the
active set, without fear of becoming locked into a “local” minimum. Exploiting this algorithmic
license is a key feature that distinguishes TNT-NN from traditional LH-NNLS type strategies.

To form the active set, TNT-NN first solves an unconstrained least squares problem. Vari-
ables that violate the non-negativity constraint are added to the active set. Once a feasible
solution is found, where none of the non-negativity constraints are violated, the 2-norm of the
residual is used as a measure of fitness and the solution is saved as the current “best” solution.

TNT-NN attempts to modify the active set by iteratively moving some of the variables from
the active set back into the unconstrained set. The active set variables are sorted based on their
components of the gradient. Variables that show the largest positive gradient components are
tested by moving some of them from the active set into the unconstrained set. It is important
to note that initially large groups of variables can be moved in a single test. If the new solution
does not improve in fitness, then the solution is rejected and a smaller set of variables is tested.
If a group of the variables can be removed from the active set and a new feasible solution is
found that is “better”, the solution is saved and the algorithm begins a new iteration. The
algorithm reaches convergence when the active set can no longer be modified.

Two scaling constants heuristically govern the number of variables that are added to and
removed from the active set. The reduction constant, rc, controls how quickly modifications to
the active set are restricted to a single variable per iteration. Large values of rc are preferable
for difficult problems with a high condition number where the gradient can be an unreliable
prediction of quality. The expansion constant, ec opposes rc by controlling how many variables
are added to the active set per iteration. Allowing the active set to be modified by a large
number of variables per iteration is preferable for less complex problems with a low condition
number where the gradient provides a good prediction of variables requiring constraint.

The TNT-NN method only begins a new iteration when a solution is found with a new
smaller residual. Since the residual is bounded below and there are a finite number of variables,
the algorithm is guaranteed to terminate. However, in the decades since the inception of
LH-NNLS, problem sizes have grown so much larger that worst case convergence analysis has
diminished in usefulness. Due to our use of heuristics, we cannot guarantee that the convergence
rate of the TNT-NN is provably better than LH-NNLS. However, our tests shows that in many
cases there is a reduction in the total number of iterations required to converge with TNT-NN.

To solve the core least squares problem, TNT-NN uses the TNT algorithm [19], which
can quickly produce solutions with low error. TNT is a left-preconditioned Conjugate Gradient
Normal Residual routine (PCGNR) [22], with the Cholesky decomposition of the matrix product
ATA used as a preconditioner. TNT naturally produces solutions with small components as it
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