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Abstract
We use blended quadrature rules to reduce the phase error of isogeometric analysis discretiza-
tions. To explain the observed behavior and quantify the approximation errors, we use the
generalized Pythagorean eigenvalue error theorem to account for quadrature errors on the re-
sulting weak forms [28]. The proposed blended techniques improve the spectral accuracy of
isogeometric analysis on uniform and non-uniform meshes for different polynomial orders and
continuity of the basis functions. The convergence rate of the optimally blended schemes is
increased by two orders with respect to the case when standard quadratures are applied. Our
technique can be applied to arbitrary high-order isogeometric elements.

Keywords: Isogeometric analysis, Finite elements, Numerical methods, Quadratures

1 Introduction

The development and use of isogeometric analysis (IGA) for partial differential equations (PDE)
has continuously grown over the last decade [7, 8, 15, 16, 19, 20, 22]. Isogeometric analysis can
use NURBS (Non-Uniform Rational B-Splines) or T-splines [9, 14, 27]. Thus, IGA uses the
framework of computer aided design (CAD) systems to exactly represent complex geometries.
This allows to simplify the process of mesh generation and refinement, as well as the infor-
mation exchange between analysis and design. Isogeometric analysis has several attractive
features. The basis functions can have higher continuity across element interfaces and hence
the approximated solutions have global continuity of order up to p− 1, where p is the order of
the underlying polynomial. These highly continuous isogeometric solutions are more accurate
and robust than standard finite element solutions per degree of freedom, although are more
costly per degree of freedom [11–13, 26]. Several efficient implementations of the isogeometric
analysis techniques in open source software are available [17, 18, 25, 29].

Dispersion analysis quantifies the approximation errors of a numerical method. The disper-
sive properties of various numerical methods, such as the finite element method (FEM), the
spectral element method (SEM), among others, have been studied in detail in the last decades
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[1, 21]. An accurate and cost-effective scheme can be obtained by employing a weighted average
of these methods [24]. In particular, Ainsworth has shown that the optimal blending of FEM
and SEM provides two orders of extra accuracy in the phase error [1, 2].

Herein, we describe the errors in the discrete approximations to elliptic eigenvalue problems
for the normal modes and frequencies of free structural vibrations. A similar analysis can be
applied to the Helmholtz equation (e.g., frequency domain wave propagation). We consider
both the eigenvalue and eigenfunction errors. That is, we conduct a global error analysis by
describing the errors in the eigenvalues and the eigenfunctions for all modes. The sum of the
eigenvalue error and the square of the L2 eigenfunction error equals the square of the error in
the energy norm. To quantify the approximation errors for the case underintegration, we have
generalized Strang’s Pythagorean theorem to include the effect of inexact integration [10, 28].

2 Problem statement

We first analyse the Laplace eigenvalue problem in one dimension

∂2u

∂x2
= λu, for x ∈ Ω =]0, 1[

u(0) = u(1) = 0,

(1)

with homogeneous Dirichlet boundary conditions. The following standard results are specialized
for the one-dimensional case to simplify the discussion [10, 22, 28, 30]. The problem has a
countable infinite set of eigenvalues λj ∈ R and an associated set of orthonormal eigenfunctions
uj (normalized with respect to the L2 inner product)

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λj ≤ ... (2)

(uj , uk) =

∫

Ω

uj(x)uk(x)dx = δjk, (3)

where δjk is the Kronecker delta which is equal to 1 when i = j and 0 otherwise. These
eigenfunctions form an L2-orthonormal basis and are orthogonal also in the energy inner product

(Luj , uk) = (λjuj , uk) = λjδjk. (4)

The standard weak form for the eigenvalue problem is stated as follows: Find all eigenvalues
λj ∈ R and eigenfunctions uj ∈ V such that, for all w ∈ V ,

a(w, uj) = λj(w, uj), (5)

where

a(w, uj) =

∫

Ω

dw

dx

duj

dx
dx, (6)

and V is a closed subspace of H1(Ω). We use the notation of [30] where (·, ·) and a(·, ·) are
symmetric bilinear forms which define the following inner products

‖w‖2E = a(w,w), ‖w‖2 = (w,w), (7)

for all v, w ∈ V . H1(Ω) denotes the Sobolev space of functions

H1(Ω) = {f : Ω → R | ‖f‖H1 < ∞}, ‖f‖2H1 =

b∫

a

[
f2(x) +

(
d

dx
f(x)

)2
]
dx. (8)
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and SEM provides two orders of extra accuracy in the phase error [1, 2].

Herein, we describe the errors in the discrete approximations to elliptic eigenvalue problems
for the normal modes and frequencies of free structural vibrations. A similar analysis can be
applied to the Helmholtz equation (e.g., frequency domain wave propagation). We consider
both the eigenvalue and eigenfunction errors. That is, we conduct a global error analysis by
describing the errors in the eigenvalues and the eigenfunctions for all modes. The sum of the
eigenvalue error and the square of the L2 eigenfunction error equals the square of the error in
the energy norm. To quantify the approximation errors for the case underintegration, we have
generalized Strang’s Pythagorean theorem to include the effect of inexact integration [10, 28].

2 Problem statement

We first analyse the Laplace eigenvalue problem in one dimension

∂2u

∂x2
= λu, for x ∈ Ω =]0, 1[

u(0) = u(1) = 0,

(1)

with homogeneous Dirichlet boundary conditions. The following standard results are specialized
for the one-dimensional case to simplify the discussion [10, 22, 28, 30]. The problem has a
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