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a  b  s  t  r  a  c  t

This  article  presents  a soft computing  methodology  to design  turbomachinery  components  experiencing
strong  shock  interactions.  The  study  targets  a reduction  of  unsteady  phenomena  using  evolutionary  opti-
mization  with  robust,  high  fidelity,  and  low  computational  cost  evaluations.  A differential  evolution  (DE)
algorithm  is  applied  to optimize  the transonic  vane  of  a high-pressure  turbine.  The  vane  design  candi-
dates  are  examined  by a cost-effective  Reynolds-averaged  Navier–Stokes  (RANS)  solver,  computing  the
downstream  pressure  distortion  and  aerodynamic  efficiency.  A  reduction  up  to  55%  of  the  strength  of  the
shock waves  propagating  downstream  of  the stand-alone  vane was  obtained.  Subsequently  to  the  vane
optimization,  unsteady  computations  of  the  vane–rotor  interaction  were  performed  using  a  non-linear
harmonic  (NLH)  method.  Attenuation  above  60%  of  the unsteady  forcing  on the rotor  (downstream  of  the
optimal  vane)  was  observed,  with  no stage-efficiency  abatement.  These  results  show  the effectiveness  of
the  proposed  soft  optimization  to improve  unsteady  performance  in modern  turbomachinery  exposed
to strong  shock  interactions.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the development of any modern aeroengine, the most expen-
sive component is the high-pressure turbine due to the harsh
environment (high temperatures downstream of the combustor
and mechanical solicitations). Higher loading per row allows to
reduce the number of stages, limiting the weight of the machine.
It contributes therefore to lower the fuel consumption of commer-
cial aircrafts. However, an increase of load implies that the flow
across the turbine passages is transonic, resulting in shock-wave
interactions [1].  Denton et al. [2] describes the aerodynamics of
the trailing-edge shock system within transonic turbine vanes. The
vane shocks waves travel downstream, impacting periodically on
the rotor blades (see Fig. 1, left). Giles [3] identified the sweeping
of the direct shock from the crown of the rotor blade towards the
leading edge, causing variations in the rotor lift of 40% of the mean
level. The downstream rotor is therefore prone to suffer from high
cycle mechanical and thermal fatigue.

Attempts to mitigate the unsteady vane–rotor shock interaction
could be classified into improved designs through a better physi-
cal understanding [4–7], active control systems [8],  and numerical
optimizations with neural networks [9,10].  Unsteady turbine stage
computations with high fidelity are however extremely expensive
and their implementation together with optimization algorithms
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is limited to 2D profiles. The unsteady optimization of real 3D
geometries remains unpractical with modern computers, even with
the assistance of surrogate models. The present research proposes
alternatively a soft computing methodology based on evolutionary
optimization, and considers robust, accurate, and computationally
affordable evaluations to redesign the vane, with the ultimate goal
to limit the unsteady vane–rotor shock interaction.

It is proposed to modulate directly the pitch-wise static pressure
distribution downstream of the stand-alone vane with Reynolds-
averaged Navier–Stokes (RANS) computations, as suggested by
Shelton et al. [11]. The aim is to attenuate the strength of the
shock waves that propagates downstream of the vane. The soft
optimization is expressed as a multi-objective problem. A differen-
tial evolution (DE) algorithm is used and assessed on mathematical
test cases. For the vane design a parameterization of the two-
dimensional section is developed with particular focus on the
contraction channel. Another parameterization of the stacking line
allows to introduce lean of the three-dimensional geometry. Each
candidate is processed by an automatic structured mesh genera-
tor and evaluated by Navier–Stokes computations. In the result
sections, the obtained optimal two- and three-dimensional vane
geometries are presented. Their flow features are analyzed to
understand how the optimized geometry reduces the downstream
propagation of shock waves. Subsequently to the vane optimiza-
tion, the abatement in the rotor forcing was  quantified using an
unsteady solver based on a non-linear harmonic (NLH) method
[12].
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Fig. 1. (Left) Vane/rotor shock interaction (Paniagua et al. [7]). (Right) Plane of interest to assess vane downstream distortion.

2. Soft optimization methodology

2.1. A multi-objective optimization problem

The optimization of the stand-alone vane has two  objectives.
The first objective is to minimize the distortion of the pitch-wise
static pressure at the vane outlet. Fig. 1, right, displays the location
where the pressure is evaluated, 35% of the axial chord downstream
of the vane trailing edge. The distortion downstream of the vane is
assessed by the standard deviation along the pitch-wise direction,
expressed by Eq. (1):
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√∫ y0+pitch
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The second objective is to ensure high efficiency. Therefore the
kinematic loss coefficient (Eq. (2)) ought to be minimized.
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2.2. Differential evolution

A multi-objective optimization is commonly described as fol-
lows with a set of objective functions fi(�x) to be minimized.

Minimize fi(
→
x)  i = 1, . . . , l

Subject to gj(
→
x) �0 j = 1, . . . , m

xu
p(

→
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A design vector �x is defined by a set of parameters xp; each one being
bounded in a specific design range. The set of optimal parameters
presenting minimal objective function values should also respect
the conditions defined by the constraints gi(�x).

Evolutionary algorithms (EAs) are well suited to multi-objective
optimization problems [13]. They are based on Darwinian evolution
whereby populations of individuals evolve over a search space and
adapt to the environment by the use of different mechanisms such
as mutation, crossover, and selection. Individuals with a higher fit-
ness have more probability to survive and/or get reproduced. EAs
are also capable to handle complex problems, involving features
such as discontinuities, multi-modality, disjoint feasible spaces and
noisy function evaluations.

In the present work the differential evolution (DE) method is
used. DE is a relatively recent evolutionary method developed by
Price and Storn [14]. Compared to genetic algorithms (GA) [15],

the method does not require the transformation of continuous
variables into binary strings. The method of Madavan [16] allows to
extend the algorithm to multi-objective problems; it uses the non-
dominated sorting and ranking selection scheme of Deb  et al. [17].
In his paper, Madavan reported that the method is self-adaptive, eli-
tist, and capable to maintain diversity in the Pareto set. The efficacy
and capabilities of the algorithm were demonstrated with several
complex test problems.

Two  typical two-dimensional mathematical optimization prob-
lems are used to verify the correct implementation of the method
for the current research. The first one is formulated as follows.

Minimize f1(
→
x) = 5sin(�x1) + cos(�x2)

f2(
→
x) = sin(�x1)cos(�x2) + x1x2

Subject to −1 � x1 � 1

−1 � x2 � 1

The constants used by the DE algorithm are F = 0.3 and C = 0.8.
The optimization problem results into a discontinuous Pareto front
expressed with Eqs. (3) and (4).
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The second test problem is the ZDT3 function. It includes two
objectives, expressed with Eqs. (5)–(7),  with 30 variables bounded
in the range [0;1].

f1(�x) = x1 (5)
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i=2

xi (7)

Fig. 2 shows results for the two  problems. Convergence is
obtained after 20 generations of populations of 30 individuals and
after 300 generations with a population size of 40 individuals, for
the first and second problem, respectively. In both cases, opti-
mal  individuals are well distributed all along a Pareto front. The
algorithm is therefore capable to converge while offering diversity
among the non-dominated solutions.
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