
Applied Soft Computing 13 (2013) 2003–2016

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

Memory-saving memetic computing for path-following mobile robots

Giovanni Iaccaa, Fabio Caraffinib,c, Ferrante Nerib,c,∗

a INCAS3 – Innovation Centre for Advanced Sensors and Sensor Systems, P.O. Box 797, 9400 AT Assen, The Netherlands
b Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, England, United Kingdom
c University of Jyväskylä, Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014 Jyväskylä, Finland

a r t i c l e i n f o

Article history:
Received 24 January 2012
Received in revised form
23 September 2012
Accepted 19 November 2012
Available online 11 December 2012

Keywords:
Computational intelligence optimization
Memetic computing
Real-time optimization
Mobile robotics
Path-following

a b s t r a c t

In this paper, a recently proposed single-solution memetic computing optimization method, namely three
stage optimization memetic exploration (3SOME), is used to implement a self-tuning PID controller on
board of a mobile robot. More specifically, the optimal PID parameters minimizing a measure of the fol-
lowing error on a path-following operation are found, in real-time, during the execution of the control
loop. The proposed approach separates the control and the optimization tasks, and uses simple operat-
ing system primitives to share data. The system is able to react to modifications of the trajectory, thus
endowing the robot with intelligent learning and self-configuration capabilities. A popular commercial
robotic tool, i.e. the Lego Mindstorms robot, has been used for testing and implementing this system.
Tests have been performed both in simulations and in a real Lego robot. Experimental results show that,
compared to other online optimization techniques and to empiric PID tuning procedures, 3SOME guaran-
tees a robust and efficient control behaviour, thus representing a valid alternative for self-tuning control
systems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Some real-world problems, due to real-time, space, and cost
requirements, often impose the solution of an optimization prob-
lem within limited computational resources. This situation is
typical in mobile robots where the specific application might
require that all the computation is embedded within the robot
hardware (a computer is not involved in the optimization process).
In addition, there are some engineering applications that require
the solution of complex optimization problems despite a limited
hardware. An example of this class of problems is the space shuttle
control. Despite the constant growth of the power in computational
devices, space applications are an interesting exception. In order
to reduce fault risks, very simple hardware is often used on pur-
pose on space shuttles. This choice allows a high reliability of the
computational cores. For example, since over 20 years, National
Aeronautics and Space Administration (NASA) employs, within the
space shuttles, IBM AP-101S computers, see [1]. These computers
constitute an embedded system for performing the control oper-
ations. The memory of computational devices is of only 1 Mb, i.e.
much less capacious than any modern device. It must be remarked

∗ Corresponding author at: University of Jyväskylä, Department of Mathematical
Information Technology, P.O. Box 35 (Agora), 40014 Jyväskylä, Finland.
Tel.: +358 14 260 1211; fax: +358 14 260 1021.

E-mail addresses: giovanniiacca@incas3.eu (G. Iacca), fcaraffini@dmu.ac.uk,
fabio.caraffini@jyu.fi (F. Caraffini), fneri@dmu.ac.uk, ferrante.neri@jyu.fi (F. Neri).

that the computational devices on board of a space shuttle should
reliably work without any reboot for months or even for years.
Thus, the necessity of having an efficient control notwithstanding
the hardware limitations (both memory and computational power)
arises.

In these cases, the optimization algorithms should perform the
task without a high employment of memory and computational
resources. Unfortunately, high performance algorithms are usu-
ally fairly complex structures employing a population of candidate
solutions and other computationally expensive components such
as learning systems or classifiers, see e.g. [2].

In the present paper, a mobile robot path-following appli-
cation is presented, in which the following controller, namely
a proportional-integrative-derivative (PID), is tuned on-line by
means of an optimization algorithm. Path-following robots, also
called automated guided vehicles (AGVs) [3,4], are mobile robots
whose main task is following a generic path, denoted e.g. by means
of markers or wires on a surface. Since they increase efficiency and
reduce costs, path-following robots are nowadays widely used in
industry (see Fig. 1) for moving raw materials, transporting pal-
lets and finished goods, removing scrap, etc. They are becoming
increasingly popular also in the health-care industry, e.g. for effi-
cient transportation of linens, trash and medical waste, patient
meals, soiled food trays, and surgical case carts, and in many other
application domains.

In this study, a test path-following application is implemented
on a popular commercial hardware, namely the embedded micro-
controller of Lego Mindstorms NXT, see Section 2. The robot

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.asoc.2012.11.039

dx.doi.org/10.1016/j.asoc.2012.11.039
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:giovanniiacca@incas3.eu
mailto:fcaraffini@dmu.ac.uk
mailto:fabio.caraffini@jyu.fi
mailto:fneri@dmu.ac.uk
mailto:ferrante.neri@jyu.fi
dx.doi.org/10.1016/j.asoc.2012.11.039

2004 G. Iacca et al. / Applied Soft Computing 13 (2013) 2003–2016

Fig. 1. An industrial path-following mobile robot.

configuration is a two driving-wheels rover, following a black ellip-
tic path over a white background. Two sensors have been used,
an ultrasonic sensor for registering the beginning and the end of
each iteration of the closed trajectory, and a light sensor to follow
the black path. More specifically, the light sensor measures the
“amount” of black and white, i.e. the percentage of light, thus
allowing a raw measure of the following error. In other words, the
path-following task is translated into the requirement that, at each
step of the control loop, the light sensor must measure 50% of white
and 50% of black during the elliptic path. When the light/darkness
proportion changes, an error is measured. The maximum error,
obviously, occurs when 100% of white and 0% of black (or dually
100% of black and 0% white) is measured. A global measure of
the error along the path is then computed as the integral abso-
lute error (IAE). The optimization problem consists of finding those
parameters proportional-integrative-derivative (PID) which allow
a minimal IAE: in this way, the robot capable of learning the best
set of parameters to follow a generic path. In addition, at every step
of the control loop, if the IAE error goes beyond a fixed threshold,
a bang-bang control is provided in order to move the robot to the
correct place, and another PID parameter set is quickly computed
by the optimization algorithm.

It is important to remark that in this work we propose an
architecture in which both the control scheme and the optimiza-
tion algorithm are implemented on board of the Lego Mindstorms,
despite its severely limited computational and memory resources,
thus avoiding any external computing device. In addition, it should
be noted that, due to hardware limitations, the implementation
of classical population based algorithms would not be a viable
option on an embedded system of this kind. In other words, in this
paper we show that the application of an advanced optimization
algorithm can allow the accomplishment of a complex industrial
task despite the employment of extremely limited hardware con-
ditions.

Although some recent studies proved that population-based
algorithms usually have a better performance than algorithms
processing a single candidate solution, see [5], still there are
some population-less (not only single-solution) methods which are
able to provide relatively good results despite a limited memory
footprint. If properly designed, population-less algorithms can be
competitive with population-based algorithms in specific applica-
tions (in accordance with the no free lunch theorem, see [6]) and
thus can be a satisfactory alternative when the hardware limita-
tions forbid the use of a complex algorithms. We will refer in these

Fig. 2. The NXT brick.

papers to these methods as “memory-saving” algorithms, i.e. algo-
rithms which do not make use of a population of solutions or the
support of memory structures. Since this article considers a specific
application characterized by severe hardware limitations we will
focus on memory-saving algorithms.

The remainder of this paper is structured as follows. Section 2
describes the experimental hardware and software setup. Section 3
introduces the optimization problem and the proposed approach
for solving it. More specifically, the real-time tasks which compose
the control architecture are described in detail. Section 4 briefly
explains the working principles of the optimization algorithm used,
namely 3SOME. Section 5 presents the experimental results: a first
subsection describes preliminary simulation experiments in which
3SOME was compared with two classical local search algorithms,
namely the Hooke–Jeeves and the Nelder–Mead methods, and four
different state-of-the-art memory-saving global optimization algo-
rithms. A validation of the simulation results in the real-world case
is then presented in the second subsection. Finally, in Section 6
the conclusion of this work is given. For the interested reader,
Appendix A presents an additional experimental setup in which
two empiric tuning procedures were compared with the 3SOME-
based proposed online optimization approach.

2. The mobile robot path follower: hardware and software
setup

2.1. Hardware configuration

Lego Mindstorms [7] is a line of the Lego products which
includes a programmable NXT brick, electric motors, sensors, and
other useful pieces such as gears, axles and pneumatics to build
robots or other automated systems. One of the most important fea-
tures of the Lego Mindstorms is the wide selection of pieces one can
choose for designing the robot, which allows many different kinds
of robotics applications, such as pick-and-place, fixed and mobile
robotics. Originally designed to be used like a toy, the Lego Mind-
storms has quickly become an important academic and educational
instrument.

What makes the Lego Mindstorms an interesting tool is the NXT
brick, see Fig. 2, which includes four input ports for connecting
sensors, three output ports for connecting motors, Bluetooth wire-
less communication, and a reasonably powerful micro-controller,
namely a 32 bit ARM7 micro-controller, with 256 KB flash memory

Download	English	Version:

https://daneshyari.com/en/article/496132

Download	Persian	Version:

https://daneshyari.com/article/496132

Daneshyari.com

https://daneshyari.com/en/article/496132
https://daneshyari.com/article/496132
https://daneshyari.com/

