

Available online at www.sciencedirect.com

Procedia Computer Science 102 (2016) 239 - 243

12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30 August 2016, Vienna, Austria

Application of z-restriction-based multi-criteria choice to a marketing mix problem

Akif Vali Alizadeh^a*, Rana Serdaroglu^b

^{a,*}Department of Control and System Engineering, Azerbaijan State University of Oil and Industry, 20 Azadlig Ave., AZ1010, Baku, Azerbaijan ^bDepartment of Banking and Finance, Near East University, P.O.BOX:99138,Nicosia, North Cyprus, Mersin 10, Turkey

Abstract

In this paper the method of solving Z-number valued multiobjective linear programming problem proposed in "R.A. Aliev, O.H. Huseynov, R.R. Aliyev, A.V. Alizadeh, The Arithmetic of Z-numbers. Theory and Applications. Singapore: World Scientific, 2015" is applied to solve a marketing mix problem. The method utilizes differential evolution optimization. The obtained results show validity and applicability of the proposed approach.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ICAFS 2016

Keywords: Z-number, reliability, linear programming, multicriteria decision making

1. Introduction

Real-world decision making problems are characterized by imperfect information, particularly, by uncertainty¹, fuzziness^{2,3,4,5,6,7,8}, partial reliability^{10,11,12} etc. For describing fuzziness and partial reliability of information, Prof. L. Zadeh introduced the concept of Z-number¹⁰. The Z-number valued multi-objective optimization problem and the solution method are considered in¹⁰. The authors formulated a statement of problem with Z-number valued decision variables, Z-number valued coefficients and right hand sides of constraints, Z-number valued coefficients of objective functions. The concepts of Z-valued feasible solution and Z-valued optimal solution and other concepts are introduced. The solution method is based on differential evolution optimization (DEO).

* Corresponding author. Tel.: 994-012-493-83-40 *E-mail address:* akifoder@yahoo.com This paper is devoted to application of the approach proposed in¹² to solving a marketing mix product problem (MMP). The MMP is one of the important real-world benchmark problems which is characterized by combination of fuzzy and probabilistic uncertainties.

The rest of the paper is organized as follows. In section 2 we present the description of the considered decision problem. Section 3 includes the formal statement of the considered problem in the form of Multiobjective Z-valued linear programming problem. In Section 4 the results of solving the problem formulated in Section 3 are given. Section 5 concludes.

2. Data presentation

A manufacturing company produces products A, B and C and has six processes for production. A decision maker has three objectives: maximizing profit, quality and worker satisfaction. Naturally, the parameters of objective functions and constraints are assigned by Z-numbers. Z-information on manufacturing planning is given in Table 1. Z-information on expected profit, index of quality and worker satisfaction index is given in Table 2.

Type of resources	Product A (Z_{x_i})	Product B (Z_{x_2})	Product C (Z_{x_3})	Maximum available capacity per month (hours) (Z_{b_i})
1	$Z_{a_{11}} = (about 12, 0.9)$	$Z_{a_{12}} = (about 17, 0.9)$	$Z_{a_{13}} = (about \ 0, 0.9)$	$Z_{b_1} = (about 1400, 0.9)$
2	$Z_{a_{21}} = (about \ 2, 0.9)$	$Z_{a_{22}} = (about 9, 0.9)$	$Z_{a_{23}} = (about \ 8, 0.9)$	$Z_{b_2} = (about \ 1000, \ 0.9)$
3	$Z_{a_{31}} = (about \ 10, \ 0.9)$	$Z_{a_{32}} = (about 13, \tilde{0.9})$	$Z_{a_{33}} = (about \ 15, \tilde{0.9})$	$Z_{b_3} = (about 1750, \tilde{0.9})$
4	$Z_{a_{41}} = (about \ 6, 0.9)$	$Z_{a_{42}} = (about \ 0, \ 0.9)$	$Z_{a_{43}} = (about 16, \tilde{0.9})$	$Z_{b_4} = (about \ 1325, \tilde{0.9})$
5	$Z_{a_{51}} = (about \ 0, 0.9)$	$Z_{a_{52}} = (about \ 12, \tilde{0.9})$	$Z_{a_{53}} = (about \ 7, 0.9)$	$Z_{b_5} = (about \ 900, \ 0.9)$
6	$Z_{a_{61}} = (about \ 10, \ 0.9)$	$Z_{a_{so}} = (about 10, \tilde{0.9})$	$Z_{a_{63}} = (about \ 4, 0.9)$	$Z_{b_6} = (about 1075, 0.9)$

Table 1. Z-information on manufacturing planning data

Table 2. Z-information on profits, quality, and worker satisfaction

Type of objectives	Product A	Product B	Product C
Profit	$Z_{C_{11}} = (about \ 50, 0.8)$	$Z_{C_{12}} = (about \ 100, \ 0.8)$	$Z_{C_{13}} = (about \ 17, \ 0.8)$
Quality	$Z_{C_{21}} = (about \ 92, \tilde{0.8})$	$Z_{C_{22}} = (about 75, 0.8)$	$Z_{C_{23}} = (about 50, 0.8)$
Worker satisfaction	$Z_{C_{31}} = (about \ 25, \tilde{0.8})$	$Z_{C_{32}} = (about \ 100, \ 0.8)$	$Z_{C_{33}} = (about 75, 0.8)$

3. Statement of problem

The considered MMP problem can be formulated as a Z-valued linear programming problem (Z-LP). Let the quantity produced for X_i be Z_{X_i} , i = 1, 2, ..., n Taking into account Z-information given in tables 1, 2, multi-criteria Z-LP model for multi-criteria planning decision may be formulated as follows.

$$\begin{split} Z_{f_1}(Z_x) &= (about \ 50, \ 0.8) \cdot Z_{x_1} + (about \ 100, \ 0.8) \cdot Z_{x_2} + (about \ 17, \ 0.8) \cdot Z_{x_3} \to \max, \\ Z_{f_2}(Z_x) &= (about \ 92, \ 0.8) \cdot Z_{x_1} + (about \ 75, \ 0.8) \cdot Z_{x_2} + (about \ 50, \ 0.8) \cdot Z_{x_3} \to \max, \\ Z_{f_3}(Z_x) &= \left[(about \ 25, \ 0.8) \cdot Z_{x_1} + (about \ 100, \ 0.8) \cdot Z_{x_2} + (about \ 75, \ 0.8) \cdot Z_{x_3} \right] \to \max, \end{split}$$

subject to

Download English Version:

https://daneshyari.com/en/article/4961632

Download Persian Version:

https://daneshyari.com/article/4961632

Daneshyari.com