

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 102 (2016) 317 - 324

12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30 August 2016, Vienna, Austria

Review of MRI-based brain tumor image segmentation using deep learning methods

Ali Işın^{a,*}, Cem Direkoğlu^b, Melike Şah^c

a.*Department of Biomedical Engineering, Near East University, P.O.BOX:99138, Nicosia, North Cyprus, Mersin 10 Turkey
bDepartment of Electrical and Electronic Engineering, Middle East Technical University, Northern Cyprus Campus, Mersin 10 Turkey
Computer Engineering, Near East University, P.O.BOX:99138, Nicosia, North Cyprus, Mersin 10 Turkey

Abstract

Brain tumor segmentation is an important task in medical image processing. Early diagnosis of brain tumors plays an important role in improving treatment possibilities and increases the survival rate of the patients. Manual segmentation of the brain tumors for cancer diagnosis, from large amount of MRI images generated in clinical routine, is a difficult and time consuming task. There is a need for automatic brain tumor image segmentation. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. Recently, automatic segmentation using deep learning methods proved popular since these methods achieve the state-of-the-art results and can address this problem better than other methods. Deep learning methods can also enable efficient processing and objective evaluation of the large amounts of MRI-based image data. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. Different than others, in this paper, we focus on the recent trend of deep learning methods in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of deep learning methods are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ICAFS 2016

Keywords: Review; image processing; deep learning; brain tumor segmentation; convolutional neural networks; mri

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ICAFS 2016

doi:10.1016/j.procs.2016.09.407

^{*} Ali Işın. Tel.: +90 0392 22 84 267; fax: +90 0392 22 88 407. *E-mail address*: ali.isin@neu.edu.tr

1. Introduction

Cancer can be defined as the uncontrolled, unnatural growth and division of the cells in the body. Occurrence, as a mass, of these unnatural cell growth and division in the brain tissue is called a brain tumor. While brain tumors are not very common, they are one of the most lethal cancers¹.

Depending on their initial origin, brain tumors can be considered as either primary brain tumors or metastatic brain tumors. In primary ones, the origin of the cells are brain tissue cells, where in metastatic ones cells become cancerous at any other part of the body and spread into the brain. Gliomas are type of brain tumors that originate from glial cells. They are the main type of brain tumors that current brain tumor segmentation research focuses on. The term glioma is a general term that is used to describe different types of gliomas ranging from low-grade gliomas like astrocytomas and oligodendrogliomas to the high grade (grade IV) glioblastoma multiform (GBM), which is the most aggressive and the most common primary malignant brain tumor². Surgery, chemotherapy and radiotherapy are the techniques used, usually in combination, to treat gliomas³.

Early diagnosis of gliomas plays an important role in improving treatment possibilities. Medical Imaging techniques such as Computed Tomography (CT), Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Imaging (MRI) are all used to provide valuable information about shape, size, location and metabolism of brain tumors assisting in diagnosis. While these modalities are used in combination to provide the highest detailed information about the brain tumors, due to its good soft tissue contrast and widely availability MRI is considered as the standard technique. MRI is a non-invasive in vivo imaging technique that uses radio frequency signals to excite target tissues to produce their internal images under the influence of a very powerful magnetic field. Images of different MRI sequences are generated by altering excitation and repetition times during image acquisition. These different MRI modalities produce different types of tissue contrast images, thus providing valuable structural information and enabling diagnosis and segmentation of tumors along with their subregions⁴. Four standard MRI modalities used for glioma diagnosis include T1-weighted MRI (T1), T2-weighted MRI (T2), T1-weighted MRI with gadolinium contrast enhancement (T1-Gd) and Fluid Attenuated Inversion Recovery (FLAIR) (see Fig. 1). During MRI acquisition, although can vary from device to device, around one hundred and fifty slices of 2D images are produced to represent the 3D brain volume. Furthermore, when the slices from the required standard modalities are combined for diagnosis the data becomes very populated and complicated.

Generally, T1 images are used for distinguishing healthy tissues, whereas T2 images are used to delineate the edema region which produces bright signal on the image. In T1-Gd images, the tumor border can easily be distinguished by the bright signal of the accumulated contrast agent (gadolinium ions) in the active cell region of the tumor tissue. Since necrotic cells do not interact with the contrast agent, they can be observed by hypo intense part of the tumor core making it possible to easily segment them from the active cell region on the same sequence. In FLAIR images, signal of water molecules are suppressed which helps in distinguishing edema region from the Cerebrospinal Fluid (CSF).

Before applying any therapy, it is crucial to segment the tumor in order to protect healthy tissues while damaging and destroying tumor cells during the therapy. Brain tumor segmentation involves diagnosing, delineating and separating tumor tissues, such as active cells, necrotic core and edema (Fig. 2) from normal brain tissues including Gray Matter (GM), White Matter (WM) and CSF. In current clinical routine, this task involves manual annotation and segmentation of large amount of multimodal MRI images. However, since manual segmentation is a very time consuming procedure, development of robust automatic segmentation methods, to provide efficient and objective segmentation, became an interesting and popular research area in recent years⁵. Current high segmentation performances obtained by deep learning methods make them good candidates for achieving this task.

The rest of the paper is organized as follows: First we briefly review methods for brain tumor image segmentation in section 2. Then, in section 3, we especially focus on methods based on deep learning algorithms, which provide the state-of-the-art results in recent years. In particular, we compare designs of different deep learning methods and their performances. Finally, in conclusions, we assess the current state-of-the-art and provide future directions for development.

Download English Version:

https://daneshyari.com/en/article/4961643

Download Persian Version:

https://daneshyari.com/article/4961643

<u>Daneshyari.com</u>