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a  b  s  t  r  a  c  t

Varying-coefficient  models  have  attracted  great  attention  in  nonlinear  time  series  analysis  recently.  In
this paper,  we  consider  a  semi-parametric  functional-coefficient  autoregressive  model,  called  the  radial
basis  function  network-based  state-dependent  autoregressive  (RBF-AR)  model.  The  stability  conditions
and existing  conditions  of  limit  cycle  of the  RBF-AR  model  are  discussed.  An  efficient  structured  parameter
estimation  method  and  the  modified  multi-fold  cross-validation  criterion  are  applied  to  identify  the  RBF-
AR model.  Application  of  the  RBF-AR  model  to the  famous  Canadian  lynx  data  is  presented.  The  forecasting
capability  of  the  RBF-AR  model  is  compared  to  those  of  other  competing  time  series  models,  which  shows
that  the  RBF-AR  model  is as  good  as  or better  than  other  models  for the  postsample  forecasts.

©  2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Varying-coefficient (or functional-coefficient) models, whose
parameters may  vary with the value of some variables, offer a
very flexible structure for modeling nonlinear time series. In recent
years, this kind of models has been popularly studied and has
many important applications. For example, Cai et al. [1] applied
the local linear regression technique for estimation of functional-
coefficient regression models for nonlinear time series. Chen and
Liu [2] studied nonparametric estimation and hypothesis testing
procedures for functional-coefficient autoregressive (FAR) mod-
els. Huang and Shen [3] proposed a global smoothing method
based on polynomial splines for the estimation of functional-
coefficient regression models. Harvill and Ray [4] extended the
functional-coefficient autoregressive model to the multivariate
nonlinear time series framework. Akesson and Toivonen [5] studied
state-dependent parameter representations of stochastic nonlin-
ear sampled-data systems. Zhang [6] studied the proportional
functional-coefficient linear regression models. Cai et al. [7] stud-
ied functional-coefficient regression models with nonstationary
time series data. Cao et al. [8] proposed penalized spline estima-
tion for functional coefficient regression model under dependence.
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Although the varying-coefficient models have already a vast litera-
ture, some researchers believe that the research in this area is just
at the beginning [6].

The aforementioned models may  be traced back to the state-
dependent models of Priestley [9]:

xt = �(Xt−1) +
k∑
i=1

�i(Xt−1)xt−i + εt +
l∑
j=1

 j(Xt−1)εt−j (1)

where {xt, t = 1, 2, . . .} are the time series, k and l are positive
integers, Xt−1 = (εt−l, . . . , εt−1, xt−k, . . . , xt−1)T denotes the “state
vector”, {εt} is a sequence of i.i.d. random variables, and εt is
independent of {xt−i, i > 0}, �(•), {�i(•)}, { j(•)} are measurable
functions from �k+l → �. Many familiar time series models are spe-
cial cases of the state-dependent model (1).  We  just name a few
below.

Take �(•), and {�i(•)}, { j(•)} all as constants, then we obtain the
linear ARMA model:

xt = � +
k∑
i=1

�ixt−i + εt +
l∑
j=1

 jεt−j (2)

Take �(•), {�i(•)} as constants, and set  j(Xt−1) = bj +∑p
i=1cjixt−i, then we  may  obtain the bilinear model [10]:

xt =
k∑
i=1

�ixt−i + εt +
l∑
j=1

bjεt−j +
p∑
i=1

m∑
j=1

cijxt−iεt−j (3)
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The threshold autoregressive (TAR) model introduced by Tong
[11], which is one of the simplest but widely used nonlinear time
series model, can also be regarded a special case of state-dependent
model (1):

xt =
k∑
i=1

{�(i) + �(i)
1 xt−1 + · · · + �(i)

p xt−p + ε(i)
t }I(xt−d ∈ ˝i) (4)

where I(•) is the usual indicator function, and {˝i} form a non-
overlapping partition of the real line.

Ozaki [12] and Haggan and Ozaki [13] proposed the exponential
autoregressive (ExpAR) model which exhibit certain well-known
features of non-linear vibrations theory, such as amplitude-
dependent frequency, jump phenomena, and limit cycle behavior:

xt = (�1 + �1 exp(−�x2
t−1))xt−1 + · · · + (�p + �p

× exp(−�x2
t−1))xt−p + εt (5)

where {�1, . . . , �p}, {�1, . . . , �p} and � > 0 are constants.
Chen and Tsay [14] proposed the functional-coefficient autore-

gressive (FAR) model:

xt = �1(X∗
t−1)xt−1 + · · · + �p(X∗

t−1)xt−p + εt (6)

where X∗
t−1 = (xt−i1 , . . . , xt−ik )

T is the threshold vector (or state
vector) with i1, . . . , ik as the threshold lags, �i(X

∗
t−1) are measurable

functions from �k → �. In practice, the k is usually a small num-
ber (e.g., k = 1 in [1,14]),  because the models with large k are often
not practically useful due to “curse of dimensionality” [1]. Obvi-
ously, the FAR model (6) is a special case of the state-dependent
model (1) without any white noise term εt−i in the threshold vector
and only with the simple AR structure, which makes the empirical
estimation is much easier than the general state-dependent model.

The main difficulty in using the FAR model (6) is specifying the
functional coefficients �i(X

∗
t−1). An efficient estimation approach is

using the nonparametric regression techniques [1–3,8].  An alter-
native to the nonparametric estimation method, if we treat the
functional specification as a problem of function approximation
from a multi-dimensional input space X∗

t−1 to a one-dimensional
scalar space, is the neural network approximation. Neural networks
are very popular tools for time series modeling and forecasting
[15–22]. Because of the “universal approximation” capability of the
radial basis function (RBF) networks, Vesin [23] and Shi et al. [24]
used a set of RBF networks to approximate the functional coeffi-
cients of the state-dependent autoregressive (or FAR) model. The
derived model, call the RBF network-based autoregressive (RBF-AR)
model, takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt = �0(X∗
t−1) +

p∑
i=1

�i(X
∗
t−1)xt−i + εt

�0(X∗
t−1) = c0 +

m∑
k=1

ck exp{−�k||X∗
t−1 − Zk||2}

�i(X
∗
t−1) = ci,0 +

m∑
k=1

ci,k exp{−�k||X∗
t−1 − Zk||2}

X∗
t−1 = (xt−1, . . . , xt−d)

T

Zk = (zk,1, . . . , zk,d)
T

(7)

where p is the model order, m is the number of hidden nodes
of the RBF networks, and d ≤ p is the dimension of the state
vector X∗

t−1; �0(X∗
t−1) and �i(X

∗
t−1) are the state-dependent func-

tional coefficients which are all composed of RBF networks;
Zk(k = 1, 2, ..., m) are the centers of the RBF networks; �k > 0 (k =
1, 2, .., m) are the real scaling parameters; ck(k = 0, 1, 2, ..., m)  and
ci,k(i = 1, 2, ..., p; k = 0, 1, 2, ..., m) are real constants; ||•|| denotes

the vector 2-norm. The RBF-AR model (7) treats the nonlinear pro-
cess by splitting the state space up into a large number of small
segments, and regarding the process as “locally linear” within each
segment. It allows the coefficients to change gradually, rather than
abruptly as in the TAR model. This may  be appealing in many appli-
cations.

From Eq. (7),  we  can see that the RBF-AR model can be regarded
as a generalized version of the classic ExpAR model (5). The model
turns out, however, to has a much stronger capability in predic-
tion and simulation than an ExpAR model [25]. If we  take X∗

t−1 =
(xt−1, �xt−1, . . . , �d−1xt−1)

T
in model (7),  it is easily can be seen

that the instantaneous dynamics of the RBF-AR model depends not
only on the present amplitude of the series but also on its veloc-
ity �xt and/or acceleration �2xt . Therefore, it could produce, for
example, asymmetric nonlinear wave patterns in time series, since
the model dynamics may  be different when the series is increasing
or decreasing [25]. On the other hand, the RBF-AR model actu-
ally shares the same flexibility in characterizing complex dynamics
with the RBF network, since it contains the RBF network as a com-
ponent. The overwhelming advantage of this class of pseudo-linear
AR models over the conventional nonlinear models may  be more
clearly seen in the application of the models in modern predictive
control problems. Peng et al. [26] extended the RBF-AR model to the
case where there are several exogenous variables (RBF-ARX model)
to the system, and designed RBF-ARX model-based predictive con-
trol (MPC) strategies to the nitrogen oxide (NOx) decomposition
process in thermal power plants [27–31].  A major feature of the
RBF-AR(X) model approach is that, in contrast to most other time-
varying liner models, its parameters may  be estimated off-line.

In this paper, we  study some probabilistic properties, the identi-
fication procedure and application of the RBF-AR model. In Section
2, stability conditions and existing conditions of limit cycle of the
RBF-AR model are discussed. Identification of the RBF-AR model
includes the choice of the orders, estimation of all the parameters,
and selection of the appropriate state vector. Parameter optimiza-
tion of the RBF-AR model is essentially a nonlinear optimization
problem, which is a very difficult task. However, the parameters
of RBF-AR model can be classified into linear and nonlinear sets,
and the number of linear parameters is usually much larger than
the number of nonlinear parameters. Peng et al. [26] proposed a
very efficient estimation algorithm so called structured nonlinear
parameter optimization method (SNPOM) for this kind of nonlin-
ear model. The orders of the RBF-AR model are determined by the
modified multi-fold cross-validation criterion which is proposed by
Cai et al. [1].  We  also consider the selection of the appropriate state
vector for RBF-AR models, which is never considered in previous
research. The identification of the RBF-AR model based on SNPOM
and the modified multi-fold cross-validation criterion is presented
in Section 3. To compare the forecasting capabilities of the RBF-AR
with some other competing time series models, the RBF-AR model
is applied to the famous Canadian lynx data which is also used in
Cai et al. [1], Zhang [32], Katijani [33], and Aladag et al. [34]. It is
shown that the RBF-AR model is as good as or better than other
models for the post-sample forecasts.

2. Stability analysis and limit cycle of the RBF-AR model

In this section, we give the stability conditions and existing con-
ditions of limit cycle of the RBF-AR model. It is not easy to check
whether a time series generated by a nonlinear model is strict sta-
tionary. For a nonlinear time series model described by a stochastic
difference equation, we  usually first represent the time series as a
vector-valued Markov chain. Then, we  derive the stationarity of the
model by proving the corresponding Markov chain is ergodic.
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