Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Nonlinear modeling and simulation of battery energy storage systems incorporating multiband stabilizers tuned by Meta-heuristic algorithm

Reza Hemmati*, Neda Azizi

Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran

ARTICLE INFO

Article history: Received 29 April 2017 Revised 15 June 2017 Accepted 26 June 2017 Available online 28 June 2017

Keywords: Battery energy storage system Multiband stabilizer Nonlinear modeling Time domain nonlinear simulation

ABSTRACT

A new control strategy including multiband stabilizers is designed for battery energy storage system (BESS). The introduced control scheme includes two internal control loops equipped with internal proportional-integral (PI) type controllers for active and reactive power control. These control loops are also equipped with multiband stabilizers. All controllers (i.e., internal controllers and multiband stabilizers) are simultaneously tuned by Meta-heuristic optimization techniques. Several disturbances are applied and simulated. The viability and effectiveness of the introduced method is verified through various nonlinear simulations and comparative studies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Energy storage systems (ESSs) are one of the most proper technologies in electric power systems that provide technical and economic advantages. There are several methods for storing energy such as mechanical, electro-chemical, electrical, thermal, and chemical approaches [1]. Although, all the methods are applicable in electric power systems, however, electro-chemical storage techniques including batteries energy storage systems (BESSs) are the most relevant storage technologies in electric power systems [2,3]. BESSs consist of several benefits making them appropriate for connecting to the electrical networks [4]. BESSs are directly connected to the main grid through interfacing converter [5].

The BESSs can be successfully utilized to damp out wind fluctuations [6,7]. In order to utilize the BESSs for facing wind uncertainties, it is required to design appropriate controllers for BESSs [8]. In the control strategies, it is required to consider the BESS operation constraints such as state of charge, rated power, and lifecycle. Designing proper control on BESS allows wind unit to be dispatched on an hourly basis according to the anticipated wind speed [8].

BESSs can also be controlled to mitigate the photovoltaic (PV) system fluctuations [9]. In hybrid PV-BESS systems, the BESS is mainly utilized to deal with power imbalance and peak load demand during grid-connected mode and to compensate power shortage under standalone mode [10]. In such models, application of model predictive control for interfacing inverter enables faster dynamic response [10]. Voltage regulation can also be achieved by BESS in hybrid PV-BESS systems; where, charging-discharging states of BESS are controlled when voltage deviates from the acceptable zone. BESS can regulate the voltage of PV system under fluctuating and nonlinearities [11].

* Corresponding author.

http://dx.doi.org/10.1016/j.simpat.2017.06.003 1569-190X/© 2017 Elsevier B.V. All rights reserved.

E-mail addresses: r.hemmati@kut.ac.ir, reza.hematti@gmail.com (R. Hemmati), n.azizi@kut.ac.ir (N. Azizi).

Nomenclature

A_s state matrix B_s input matrix C_s output matrix D_m static friction coefficient E_{fgl} excitation voltage (p.u.) E_{fgl} internal voltage behind \dot{x}_q (pu) E_q internal voltage behind \dot{x}_q (pu) E_q internal voltage behind \dot{x}_q (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_a regulator gain K_p proportional gain of active power controller K_{P1} proportional gain of reactive power controller K_{P1} integral gain of reactive power controller K_{D1} integral gain of stabilizer m counter of time constants of stabilizer n counter of time constants of stabilizer r counter of time constants of stabilizer r counter of time constants of stabilizer n counter of state power (w) Q_{ref} reference reactive power (w) Q_{ref} reference reactive power (w) Q_{ref} reference reactive power (w) Q_{ref} reference rostants of stabilizer T_{ras} time constant of excitation circui	Symbols and parameters	
B_s input matrix C_s output matrix D_s feed-forward matrix D_m static friction coefficient E_{fd} transient voltage behind $\dot{x_q}$ (pu) E_q internal voltage behind $\dot{x_q}$ (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of proportional gain f_{P1} proportional gain of active power controller K_{r2} proportional gain of reactive power controller K_{r1} integral gain of active power controller K_{r2} integral gain of stabilizer m counter of time constant sof stabilizer n counter of time constant sof stabilizer n counter of time constants of stabilizer n counter of time constant sof stabilizer n counter of time constant sof stabilizer T_1 reference reactive power (wr) Q reference reactive power (wr) Q reference reactive power (var) r_1 reference voltage (pu) V_{ref} <td></td> <td></td>		
C_s output matrix D_s feed-forward matrix D_m static friction coefficient E_{fd} excitation voltage (pu.) E_{fd} transient voltage behind $\dot{x_q}$ (pu) E_q internal voltage behind $\dot{x_q}$ (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_a regulator gain of active power controller K_{P2} proportional gain of reactive power controller K_{P2} proportional gain of reactive power controller K_{11} integral gain of reactive power controller K_{11} integral gain of stabilizer m counter of time constant of stabilizer n counter of stabilizer (s) T_q reference reactive power (var) P_{ref} reference costant of stabilizer n counter of stabes in state-space model v_{ref} vector of states in state-space model v_{r	-	
D_s feed-forward matrix D_m static friction coefficient E_{jd} excitation voltage (p.u.) E'_{fd} transient voltage behind $\dot{x_q}$ (pu) E'_q internal voltage behind $\dot{x_q}$ (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_{p1} proportional gain of active power controller K_{p2} proportional gain of reactive power controller K_{p2} gain of stabilizer K_{rL} gain of stabilizer m counter of gain of stabilizer n counter of gain of stabilizer n counter of time constant of q reference active power (w) Q reactive power (w) Q_{ref} reference reactive power (var) r_{ref} reference voltage (pu) V_{ref} reference voltage (pu) V_{ref} reference voltage (pu) V_{ref} reference voltage (pu) V_{ref} reference rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu)<	-	•
D_m static friction coefficient E_{fd} excitation voltage (p.u.) E_{fd} transient voltage behind $\dot{x_q}$ (pu) E_q internal voltage behind $\dot{x_q}$ (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_a regulator gain K_{p1} proportional gain of active power controller K_{p2} proportional gain of reactive power controller K_{I1} integral gain of reactive power controller K_{I2} integral gain of stabilizer R_{I-K_{12} gain of stabilizer m counter of gain of stabilizer m counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) Q reactive power (var) r_{ref} reference active power (var) $rcounter of stabilizerT_1-T_{48}time constant of stabilizerT_1-T_{48}time constant of stabilizerT_dregulator time constant (s)T_dtime constant of excitation circuit (s)uinput signals in state-space model\psi_{ref}reference voltage (pu)\psi_tvoltage on network (pu)\dot{x}vector of states in state-space model\dot{b}differential of rotor angle (Rad/Sec)\omegareference rotor speed (pu)\dot{w}<$	-	
E_{jd} excitation voltage (p.u.) E_{fd} transient voltage behind $\dot{x_q}$ (pu) E_{q} internal voltage behind $\dot{x_q}$ (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_a regulator gain of active power controller K_{P1} proportional gain of reactive power controller K_{I1} integral gain of reactive power controller K_{I1} integral gain of reactive power controller K_{I1} integral gain of stabilizer m counter of gain of stabilizer M system inertia (Mj/MVA) P electrical power (pu) Q reactive power (var) P_{ref} reference reactive power (var) r counter of time constants of stabilizer T_{rd8} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) v_t voltage on network (pu) \dot{x} vector of states in state-space model V_{ref} reference rotor speed (pu) \dot{w} differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differe	-	
\dot{E}_{fd} transient voltage behind \dot{x}_q (pu) E_q internal voltage behind \dot{x}_q (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of integral gain K_a regulator gain K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{I1} integral gain of active power controller K_{I2} integral gain of active power controller K_{I2} integral gain of stabilizer m counter of gain of stabilizer n counter of gain of stabilizer n counter of time constant of active power (w) P_{ref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constant of stabilizer (s) T_a regulator time constant (s) T_d time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference rotor speed (pu) \dot{x} vector of states in state-space model </td <td></td> <td></td>		
E_q internal voltage behind $\dot{x_q}$ (pu) E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_a regulator gain K_{p1} proportional gain of active power controller K_{p2} proportional gain of reactive power controller K_{p2} integral gain of active power controller K_{p2} integral gain of active power controller K_{p2} gain of stabilizer K_{1-K_{12} gain of stabilizer m counter of gain of stabilizer m mechanical power (pu) Q reactive power (var) P_{ref} reference reactive power (var) r counter of time constant of stabilizer T_{a} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) χ voltage on network (pu) \dot{x} vector of states in state-space model g differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) <t< td=""><td></td><td></td></t<>		
E_q voltage of q axis (p.u.) F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of integral gain K_a regulator gain K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{I1} integral gain of active power controller K_{I2} integral gain of reactive power controller K_{I2} integral gain of stabilizer K_{DC1} - K_{DC6} gain of stabilizer m counter of were (pu) Q restrive power (var) P_{ref} reference active power (var) r counter of time constant of stabilizer T_{1} - T_{48} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) χ voltage on network (pu) χ vector of states in state-space model δ differential of rotor speed (pu) ω differential of rotor speed (pu) <td></td> <td></td>		
F frequency of the grid (Hz) $Fref$ reference of frequency (Hz) i counter of proportional gain j counter of integral gain K_a regulator gain K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{I1} integral gain of reactive power controller K_{I2} integral gain of reactive power controller K_{I2} gain of stabilizer $K_{1-K_{I2}}$ gain of stabilizer m counter of time constants of stabilizer T_1 - T_{48} time constant of stabilizer (s) T_q regulator time constant (s) T_d time constant of excitation circuit (s) u input signals in state-space model \sqrt{ref} reference voltage (pu) \sqrt{t} vector of states in state-space model \sqrt{t} differential of rotor speed (pu) $\frac{\sqrt{t}}$ vector of states in state-space model \sqrt{t} differ		
Frefreference of frequency (Hz)icounter of proportional gainjcounter of integral gain K_a regulator gain K_a regulator gain of active power controller K_{P2} proportional gain of active power controller K_{I1} integral gain of reactive power controller K_{I2} integral gain of reactive power controller K_{I2} integral gain of reactive power controller K_{D2} gain of stabilizer K_{DC1} - K_{D26} gain of stabilizermcounter of gain of stabilizermcounter of gain of stabilizermcounter of gain of stabilizerMsystem inertia (Mj/MVA)Pactive power (w) Q reactive power (pu) P_m mechanical power (pu) Q reactive power (var) r_{ref} reference reactive power (var) $rcounter of time constant of stabilizerT_{a}regulator time constant (s)T_{a}regulator time constant (s)T_{a}reference voltage (pu)v_{ref}reference voltage in state-space modelv_{ref}output signals in state-space model\deltadifferential of rotor speed (pu)\omegarotor speed (pu)\omegarotor speed (pu)\omegaoutput signals in state-space model\deltadifferential of rotor speed (pu)\omegareference rotor speed (pu)\omegareference rotor speed (pu)\omegareference rotor speed (pu)$		
icounter of proportional gainjcounter of integral gain K_a regulator gain K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{I1} integral gain of active power controller K_{I2} integral gain of reactive power controller K_{I2} integral gain of stabilizer K_{DCI} - K_{DC6} gain of stabilizer m counter of time constant of m Q reactive power (var) P_{ref} reference reactive power (var) r counter of time constant of stabilizer T_1 - T_{48} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) v_t voltage on network (pu) \dot{x} vector of states in state-space model \dot{b} differential of rotor speed (pu) ω differential of rotor speed (pu) ω differential of rotor speed (pu) ω differential of		
jcounter of integral gain K_a regulator gain K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{I1} integral gain of active power controller K_{I2} integral gain of reactive power controller K_{I2} integral gain of reactive power controller K_{I2} gain of stabilizer K_{DCI} - K_{DCG} gain of stabilizer m counter of une constant of stabilizer m mechanical power (pu) Q reactive power (var) P_{ref} reference reactive power (var) r counter of time constant of stabilizer r_{1-rL_{48} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) v_{t} voltage on network (pu) \dot{x} vector of states in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω differential of rotor speed (pu) ω differentia		
K_a regulator gain K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{11} integral gain of active power controller K_{11} integral gain of active power controller K_{DC1} - K_{DC6} gain of stabilizer K_1 - K_{12} gain of stabilizer m counter of time constants of stabilizer r reference reactive power (var) r counter of time constant of stabilizer r_1 - r_4_8 time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) \dot{v} voltage on network (pu) \dot{x} vector of states in state-space model δ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω differential of rotor speed (pu) ω differential of rotor speed (pu) ω		
K_{P1} proportional gain of active power controller K_{P2} proportional gain of reactive power controller K_{I1} integral gain of active power controller K_{I2} integral gain of reactive power controller K_{I2} gain of stabilizer K_{DCI} - K_{DC6} gain of stabilizer m counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) Q reactive power (var) P_{ref} reference active power (var) r counter of time constants of stabilizer T_1 - T_{48} time constant of stabilizer (s) T_a regulator time constant (s) T' dotime constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) \dot{x} vector of states in state-space model g output signals in state-space model \dot{y} output signals in state-space model \dot{b} differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω	-	
K_{P2} proportional gain of reactive power controller K_{11} integral gain of active power controller K_{L2} integral gain of factive power controller K_{DC1} - K_{DC6} gain of stabilizer m counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) Q reactive power (var) r_{ref} reference active power (var) r reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) \dot{x} vector of states in state-space model y output signals in state-space model \dot{y} output signals in state-space model $\dot{\delta}$ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ <td< td=""><td></td><td></td></td<>		
K_{II} integral gain of active power controller K_{I2} integral gain of reactive power controller K_{DCI} - K_{DCG} gain of stabilizer m counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_{e} electrical power (pu) P_m mechanical power (pu) Q reactive power (var) r_{ref} reference active power (var) r counter of time constants of stabilizer T_1 - T_{48} time constant of stabilizer (s) T_a regulator time constant (s) T'_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model ϕ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω differential of time and absolute error<		
K_{I2} integral gain of reactive power controller K_{DCI} - K_{DCG} gain of stabilizer m counter of gain of stabilizer m counter of gain of stabilizer n counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) Q_m reactive power (var) P_{ref} reference active power (var) P_{ref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model δ differential of rotor angle (Rad/Sec) ω reference rotor speed (pu) $\dot{\omega}$ output signals in state-space model δ differential of rotor speed (pu) $\dot{\omega}$ output signals in state-space model δ differential of rotor speed (pu) $\dot{\omega}$ output signals in state-space model δ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω differential of rot		
$K_{DC1}-K_{DC6}$ gain of stabilizer m counter of gain of stabilizer m counter of gain of stabilizer n counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) Q_m mechanical power (pu) Q reactive power (var) P_{ref} reference active power (var) r_{ref} reference reactive power (var) $rcounter of time constants of stabilizerT_1-T_{48}time constant of stabilizer (s)T_aregulator time constant (s)T_{do}time constant of excitation circuit (s)uinput signals in state-space modelV_{ref}reference voltage (pu)V_tvoltage on network (pu)\dot{x}vector of states in state-space model\dot{\delta}differential of rotor angle (Rad/Sec)\omegarotor speed (pu)\dot{\omega}reference rotor speed (pu)\dot{\omega}reference rotor speed (pu)\dot{\omega}reference rotor speed (pu)\dot{\omega}statery energy storage systemESSBattery energy storage systemBESSSuttery energy storage systemCPSConventional power system stabilizerPIProportional integralPSOParticle swarm optimization$		
K_1 - K_{12} gain of stabilizer m counter of gain of stabilizer n counter of gain of stabilizer M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) P_m mechanical power (pu) Q reactive power (var) P_{ref} reference active power (var) r_{ref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model ϕ oifferential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of time and absolute errorMPSSMultiband power system stabilizerFSSParticle swarm optimization		
mcounter of gain of stabilizerncounter of gain of stabilizerMsystem inertia (Mj/MVA)Pactive power (w) P_e electrical power (pu) Q reactive power (var) P_{ref} reference active power (w) Q_{ref} reference reactive power (var)rcounter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s)uinput signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model \dot{y} output signals in state-space model $\dot{\phi}$ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ for the and absolute error<		
ncounter of gain of stabilizerMsystem inertia (Mj/MVA)Pactive power (w) P_e electrical power (pu) P_m mechanical power (pu)Qreactive power (var) P_{ref} reference active power (var)rcounter of time constants of stabilizer $T_1 \cdot T_{48}$ time constant of excitation circuit (s)uinput signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model ϑ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}_0$ reference rotor speed (pu) $\dot{\omega}_0$ reference rotor speed (pu) \dot{m} netregy storage systemTAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPSOParticle swarm optimization		
M system inertia (Mj/MVA) P active power (w) P_e electrical power (pu) P_m mechanical power (pu) Q reactive power (var) P_{ref} reference active power (w) Q_{tref} reference reactive power (var) r counter of time constants of stabilizer $T_1 \cdot T_{48}$ time constants of stabilizer (s) T_a regulator time constant (s) T'_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model ϑ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}_0$ reference rotor speed (pu) $\dot{\omega}_0$ reference rotor speed (pu) $\dot{\omega}_0$ Rate-space systemESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPSOParticle swarm optimization		
Pactive power (w) P_e electrical power (pu) P_m mechanical power (pu)Qreactive power (var) P_{ref} reference active power (w) Q_{ref} reference reactive power (var)rcounter of time constants of stabilizer $T_1 - T_{48}$ time constants of stabilizer (s) T_a regulator time constant (s) T'_{do} time constant of excitation circuit (s)uinput signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) $Abbreviations$ BESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
P_e electrical power (pu) P_m mechanical power (pu) Q reactive power (var) P_{ref} reference active power (w) Q_{ref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T dotime constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model g output signals in state-space model ϕ differential of rotor angle (Rad/Sec) ω reference rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) $Filtheredfilthered\omega_0reference rotor speed (pu)\omegadifferential of rotor speed (pu)\omegadifferential of rotor speed (pu)\omegadifferential of rotor speed (pu)\omegaRestBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization$		
P_m mechanical power (pu) Q reactive power (var) P_{ref} reference active power (w) Q_{tref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T'_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model y output signals in state-space model ϕ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) $mather endsystemRESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization$		
Qreactive power (var) P_{ref} reference active power (w) Q_{ref} reference reactive power (var)rcounter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s)uinput signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model $y_{.}$ output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 Reference rotor speed (pu) $Mbreviations$ BESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	-	
P_{ref} reference active power (w) Q_{ref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model $y_{.}$ output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) $mather of times$ substantBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
Q_{ref} reference reactive power (var) r counter of time constants of stabilizer T_1 - T_{48} time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model $y_{.}$ output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) $mather of times reference rotor speed (pu)$ $mather of times rotor speed (pu)$ mat		
rcounter of time constants of stabilizer $T_1 - T_{48}$ time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model y output signals in state-space model g output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) $Mbreviations$ BESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	<u> </u>	
$T_1 - T_{48}$ time constants of stabilizer (s) T_a regulator time constant (s) T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model $y_{.}$ output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference systemESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	2	
T_q regulator time constant (s) T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model $y_{.}$ output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) $\Delta bbreviations$ BESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	$T_1 - T_{48}$	
T_{do} time constant of excitation circuit (s) u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model y output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference systemESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
u input signals in state-space model V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model y output signals in state-space model δ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) $Abbreviations$ BESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
V_{ref} reference voltage (pu) V_t voltage on network (pu) \dot{x} vector of states in state-space model y output signals in state-space model $\dot{\delta}$ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) $Abbreviations$ BESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
V_t voltage on network (pu) \dot{x} vector of states in state-space model y output signals in state-space model $\dot{\delta}$ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) $Abbreviations$ BESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	V _{ref}	
\dot{x} vector of states in state-space model y output signals in state-space model $\dot{\delta}$ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu) ω_0 reference rotor speed (pu)AbbreviationsBESSBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
youtput signals in state-space model $\dot{\delta}$ differential of rotor angle (Rad/Sec) ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu)AbbreviationsBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	ż	
ω rotor speed (pu) $\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu)AbbreviationsBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	У	output signals in state-space model
$\dot{\omega}$ differential of rotor speed (pu) ω_0 reference rotor speed (pu)AbbreviationsBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
ω₀reference rotor speed (pu)AbbreviationsBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	ω	rotor speed (pu)
AbbreviationsBESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	$\dot{\omega}$	differential of rotor speed (pu)
BESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	ω_0	reference rotor speed (pu)
BESSBattery energy storage systemCPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization	Abbraviations	
CPSSConventional power system stabilizerESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
ESSEnergy storage systemITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
ITAEIntegral of time and absolute errorMPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
MPSSMultiband power system stabilizerPIProportional integralPSOParticle swarm optimization		
PIProportional integralPSOParticle swarm optimization		
PSO Particle swarm optimization		
	1 4 4 1 4 1	

Voltage profile in residential distribution networks may also be improved through appropriate control of BESS [12]. In the residential distribution networks, voltage of low-resistance distribution feeders can be regulated by reactive power compensation from PV inverters. But PV system cannot support voltage profile in high-resistance feeders and it is required to install

Download English Version:

https://daneshyari.com/en/article/4962650

Download Persian Version:

https://daneshyari.com/article/4962650

Daneshyari.com