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a b s t r a c t 

We analyze the splitting algorithm performance in the estimation of rare event probabili- 

ties in a discrete multidimensional framework. For this we assume that each threshold is 

partitioned into disjoint subsets and the probability for a particle to reach the next thresh- 

old will depend on the starting subset. A straightforward estimator of the rare event proba- 

bility is given by the proportion of simulated particles for which the rare event occurs. The 

variance of this estimator is the sum of two parts: with one part resuming the variability 

due to each threshold, and the second part resuming the variability due to the number of 

thresholds. This decomposition is analogous to that of the continuous case. The optimal 

algorithm is then derived by cancelling the first term leading to optimal thresholds. Then 

we compare this variance with that of the algorithm in which one of the threshold has 

been deleted. Finally, we investigate the sensitivity of the variance of the estimator with 

respect to a shape deformation of an optimal threshold. As an example, we consider a two- 

dimensional Ornstein–Uhlenbeck process with conformal maps for shape deformation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The risk modeling approach consists of, first, formalizing the system under consideration, and second, using mathematical 

or simulation tools to obtain some estimates [2,29] . Analytical and numerical approaches are useful, but may require many 

simplifying assumptions. On the other hand, a Monte Carlo simulation is a practical alternative when the analysis requires 

fewer simplifying assumptions. Nevertheless, obtaining accurate estimates of rare event probabilities, say about 10 −9 to 

10 −12 , using traditional techniques requires an extremely large amount of computing time. 

Many techniques for reducing the number of trials in a Monte Carlo simulation have been proposed, such as importance 

sampling or trajectory splitting ( [24] ). In the splitting technique, we suppose that there exists some well-identifiable inter- 

mediate states that are visited more frequently than the target states themselves, and behave as gateways to reach the rare 

event. Thus, we consider a decreasing sequence of events B i leading to the rare event B : 

B := B M+1 ⊂ B M 

⊂ . . . ⊂ B 1 . (1) 
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Then p := P (B ) = P (B | B M 

) P (B M 

| B M−1 ) . . . P (B 2 | B 1 ) P (B 1 ) , where on the right-hand side, each conditioning event is “not 

rare”. These conditional probabilities are, in general, not available explicitly. Instead, we know how to make the particles 

evolve from level B i to the next level B i +1 (e.g. Markovian behavior). 

The principle of the algorithm is first to simultaneously run several particles starting from level B i . After a period of time, 

some have evolved “badly”, while others have evolved “well”, that is, they have succeeded in reaching the threshold B i +1 . 

Then the “bad” particles are moved to the position of the “good” ones, and so on, until B is reached. In such a way, the more 

promising particles are favoured. Examples of this class of algorithms can be found in [3] , with their “go with the winners”

scheme, in [20] and [13] with approximate counting, and in a more general setting in [9,11,12,14,26] . 

The difficulty comes from the complexity of the dynamics of the particles. A simpler analysis can be completed by 

focusing only on the underlying Markov chain that represents the changes of thresholds. In this technique, we make a 

Bernoulli trial to check whether or not the set event B 1 has occurred. In that case, we split this trial into R 1 Bernoulli 

subtrials, and for each of them we again check whether or not the event B 2 has occurred. This procedure is repeated at 

each level, until B is reached. If an event level is not reached, then neither is B , and we stop the current retrial. Using N 

independent replications of this procedure, we have considered NR 1 . . . R M 

trials, taking int o account, for example, that if we 

have failed to reach a level B i at the i th step, the potential R i . . . R M 

retrials have failed. Clearly the particles reproduce and 

evolve independently. 

An unbiased estimator of p is given by the quantity: 

̂ p M+1 = 

N B 

N 

∏ M 

i =1 R i 

, 

where N B is the total number of trajectories having reached the set B . Considering that this algorithm is represented by N 

independent Galton–Watson branching processes, as seen in [22] , the variance of ̂ p M+1 can then be derived, and depends on 

the probability transitions and the mean numbers of particles’ successes at each level. Leading by the heuristic presented in 

[31,32] , an optimal algorithm is derived by minimising the variance of the estimator for a given budget (or computational 

cost). This cost is defined as the expected number of trials generated during the simulation, with each trial weighted by a 

cost function. 

The optimisation of the algorithm suggests that all transition probabilities be taken as equal to a constant, and the 

numbers of splitting be equal to the inverse of this constant [22] . Then we deduce the number of thresholds M , and finally 

the number N of replications. In fact, optimal values are chosen in such a way so as to balance between the increase of the 

variance when the number splitting is small and the exponential growth in computational effort when too much splitting 

is used. 

In the higher dimension, the engineering community has proposed algorithms to estimate rare event probabilities. Sub- 

set simulation, which is also based on a partitioning of the space into nested subsets, uses the Markov Chain simulation 

(in particular, the Metropolis Hastings scheme), see [7] . Importance sampling techniques have also been developed in that 

framework. When the failure region is not too complex to describe, schemes to construct importance sampling algorithms 

have been introduced that are based on design points (see e.g., [6] , and [21] , and the references therein), or adaptive pre- 

samples (see e.g., [5] and the references therein). When the complexity of the rare event increases, it appears to be difficult 

to construct an efficient importance sampling scheme [30] . 

In this paper, we continue the multidimensional approach and theoretically study the algorithm introduced in [17] and 

[15] , particularly in order to obtain a new expression of the variance of the estimator analogous to that of the continu- 

ous case [24] . Thus, we assume that each threshold is partitioned into s disjoint subsets and the probability for a particle 

starting from a threshold to reach the next threshold will depend on the starting subset. Unlike the unidimensional case, 

the difficulty of reaching the next threshold differs according to the starting subset; it may be that the threshold is no 

longer an iso-probability level. In this context, the variance of the estimator ̂ p M+1 is the sum of two parts: with one part 

resuming the variability due to each threshold and the second part resuming the variability due to the thresholds’ number 

(see Proposition 3.1 ). For the unidimensional case, only the second term remains. The optimal algorithm is then derived by 

cancelling the first term of the variance leading to iso-probability levels and by optimising the other parameters as in the 

unidimensional case. 

Furthermore, by introducing new operators, we obtain an alternative expression of the variance which is more tractable 

when we wish to compare the variance of the estimators in an algorithm with M thresholds with the variance in an algo- 

rithm in which one of the threshold has been deleted. More precisely, we study the need for an intermediate threshold and 

derive a procedure to detect whether or not to keep it. In order to obtain a simple criteria, we assume the optimal shape 

of the thresholds of the optimal algorithm. Finally, we investigate the sensitivity of the variance of ̂ p M+1 with respect to a 

shape deformation of the threshold, relative to the optimal shape. 

The remainder of this paper is divided into five sections. In Sections 2 –4 , we present, theoretically analyze and optimise 

the splitting algorithm in the multidimensional case. Next, Sections 5 and 6 deal with the sensitivity analysis of the variance 

as previously presented. In particular, in Section 6 , we illustrate a way by which to deform the shape of the thresholds in 

order to get uniform occupation densities with a 2D Ornstein–Uhlenbeck process. Finally, we complete the paper with a 

conclusion and some perspectives. More details and all proofs are in the Appendices. 
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