
Simulation Modelling Practice and Theory 70 (2017) 149–158 

Contents lists available at ScienceDirect 

Simulation Modelling Practice and Theory 

journal homepage: www.elsevier.com/locate/simpat 

A simulation analysis of the impact of finite buffer storage on 

manufacturing system reliability 

Ping-Chen Chang 

Department of Industrial Engineering and Management, National Quemoy University, Kinmen County 892, Taiwan, ROC 

a r t i c l e i n f o 

Article history: 

Received 11 July 2016 

Revised 15 October 2016 

Accepted 22 October 2016 

Available online 9 November 2016 

Keywords: 

Mote Carlo Simulation (MCS) 

Multistate manufacturing network 

Parallel production lines 

Finite buffer storage 

System reliability 

a b s t r a c t 

This paper develops a Monte Carlo Simulation (MCS) approach to estimate the system re- 

liability for a multistate manufacturing network with parallel production lines (MMN-PPL) 

considering finite buffer storage. System reliability indicates the probability that all work- 

stations provide sufficient capacity to satisfy a specified demand and buffers possess ade- 

quate storage. The buffers are modeled as a network-structured MMN-PPL. Storage usage 

of buffers is analyzed based on the MMN-PPL. MCS algorithms are developed to gener- 

ate the capacity state and to check the storage usage of buffers to determine whether the 

demand can be satisfied or not. System reliability of the MMN-PPL is estimated through 

simulation. The MCS approach is an efficient method to estimate system reliability for an 

MMN-PPL with a reasonable accuracy and time. A pair of practical examples including a 

tile and a touch panel manufacturing systems shows that system reliability is overesti- 

mated when buffer storage is assumed to be infinite. Demand satisfaction probability is 

further addressed to provide guidance for a proper production policy. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Multistate manufacturing network (MMN) modeling is widely applied to several practical manufacturing systems such as 

touch panels [15] , apparel [3] , and tile production [10] . In a network-structured MMN, each arc is regarded as a worksta- 

tion and each node an inspection point. Each workstation consists of identical (or similar) machines performing the same 

function and thus the capacity of a workstation exhibits multiple levels due to the availability or unavailability of these 

machines. Workstations with multiple capacity states therefore comprise an MMN. To investigate the capability of an MMN, 

system reliability is an appropriate index to assess the probability of demand satisfaction. That is, system reliability is gen- 

erally defined as the probability that an MMN can provide sufficient capacity to satisfy a specified level of demand [8,21,22] . 

In earlier MMN models [8,21,22] , the minimal path (MP: a set of arcs and nodes forming an acyclic path with no return) 

method is a commonly adopted to identify minimal capacity vectors that workstations must provide to produce a specified 

level of demand [8,21,22] . Such vectors are utilized to calculate the system reliability of an MMN. However, in order to find 

all minimal capacity vectors, most MP-based algorithms [8,21,22] are constrained by flow conservation law, meaning that 

flow does not increase or decrease during processing [7] . 

Recent studies [10,11] indicated that the assumptions of MP and flow conservation may limit the applicability of MMN 

models. Using MP against flows return (rework) in an MMN while flow is changing is not allowed by flow conservation 

law. As a result, previous studies are not able to consider real-world scenarios that involve rework and scrap. To overcome 
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this limitation of MP and the flow conservation law, recent work [10,11] has successfully considered rework and scrap in 

an MMN through graphical methods, where the MMN is decomposed into different paths to analyze flows from the general 

and rework paths. Once the amount of flow processed by each workstation is obtained, the loadings and minimal capaci- 

ties needed for all workstations can be derived. System reliability is subsequently calculated in terms of minimal capacity 

vectors. Various studies further consider parallel production lines [11] , joint production lines [11] , quality issues [2,6] , and a 

time threshold [12] to evaluate system reliability for an MMN. In particular, MMN with parallel production lines (MMN-PPL) 

is a suitable model for many real-world scenarios. Despite the previous contribution to MMN modeling, all past studies 

assume infinite buffer storage between workstations when system reliability is evaluated. 

Assuming infinite buffer storage in an MMN simplifies flow analysis and reliability evaluation. In practice, however, each 

workstation operates at a distinct production rate and a workstation may starve when it must wait for the next work-in- 

process (WIP). In other situations, WIP may be blocked and have to wait before entering a workstation [1,19] . To reduce the 

possibility of blockage and starvation, buffer allows sequential workstations to operate independently of each other [4,9] . 

Thus, modeling buffers in an MMN is a practical approach to evaluate system reliability. Modeling buffers complicates an 

MMN by considering the dependency between workstations. Monte Carlo Simulation (MCS) is an appropriate tool to ex- 

plore the phenomenon and capability of these more complicated systems. The main idea underlying MCS is to generate 

random samples repeatedly and to observe the behavior over a long period [16,20] . Utilizing MCS, Ramirez-Marquez and 

Coit [17] and Yeh et al. [23] proposed an approach to generate possible capacity states to estimate system reliability of a 

multistate system. Several further extensions of their work consider time constraints [13] and correlated failures [14] when 

estimating system reliability of a multistate system. The abovementioned MCS approaches, however, fail to consider rela- 

tionship between components (arcs or nodes). Therefore, this paper develops an MCS approach to model buffers between 

workstations in order to estimate system reliability. 

To the best of the author’s knowledge, no previous study has considered finite buffer storage in an MMN to estimate 

system reliability. Because parallel production lines are much more realistic in the manufacturing, this paper focuses on 

system reliability estimation of an MMN-PPL. To accurately evaluate MMN-PPL, system reliability is defined as the probability 

that all workstations provide sufficient capacity to satisfy demand and buffers do not run out of storage. System reliability 

can be regarded as a performance index to quantify the probability of demand satisfaction for an MMN-PPL. First, buffers 

with finite storages are incorporated into a network-structured MMN-PPL model. Second, storage usage of each buffer is 

analyzed under different demand levels. Third, MCS-based algorithm based on the storage usage is developed to estimate 

system reliability. The impact of finite buffer storage on system reliability is further studied to compare with the case of 

infinite buffer storage. Moreover, the probability of satisfaction under different demand combinations is analyzed to guide 

production policy. 

The remainder of this paper is organized as follows. The MMN-PPL model with finite buffer storages is developed in 

Section 2 . Two MCS-based algorithms to estimate system reliability with both infinite and finite buffer storages are pre- 

sented in Section 3 . Section 4 provides an illustrative example of a tile manufacturing system to demonstrate the MCS 

algorithm. In Section 5 , a more complicated case study of a touch panel manufacturing system is studied to demonstrate 

the scalability of the proposed approach. Conclusions of this paper are summarized in Section 6 . 

2. MMN model building 

Incorporating buffers into the MMN-PPL model, this paper first utilizes an activity-on-arc (AOA) diagram to represent 

a multistate manufacturing system. In an AOA-formed MMN-PPL, each arc denotes a workstation (by a solid-line arc) or a 

buffer (by a dot-line arc), and each node denotes an inspection point following the workstation. Let a j , i be the i th worksta- 

tion in the j th production line, the current capacity of a j , i is a random variable denoted by x j , i ; the maximal capacity of a j , i 
is denoted by M j , i . Let c j , i be the number of possible capacity states of a j , i ; x j , i ( α ) denotes the αth possible capacity state 

of a j , i , where α = 1, 2 , . . . , c j , i . Hence, x j , i takes possible values 0 = x j , i (1) < x j , i (2) < … < x j,i ( c j,i ) = M j , i . To estimate system 

reliability of an MMN-PPL, the following assumptions are utilized in this paper: 

(1) Each inspection point (node) is perfectly reliable; inspection point does not damage WIP or products 

(2) The capacity x j , i of each workstation (arc) is a random variable which takes possible values from 0 = x j , i (1) < x j , i (2) < 

… < x j,i ( c j,i ) = M j , i according to a given probability distribution. 

(3) The capacities of workstations (arcs) are statistically independent. 

2.1. MMN-PPL with buffers 

This section depicts workstations and buffers as a network-structured MMN-PPL with the help of an AOA diagram. Let 

G 

≡ ( N, A, B ) be an MMN-PPL in which N is the set of nodes (inspection points) and A = { a j , i | j = 1, 2 , . . . , m; i = 1, 2 , . . . , n } 

is the set of arcs (workstations). Arc a j , i is the i th workstation in the j th production line. The set of buffers is denoted by 

B = { b j ,( i , i + 1) | i : a buffer is installed between a j , i and a j , i + 1 }. Please note that installing buffers between every pair of upstream 

( a j , i ) and downstream ( a j , i + 1 ) workstations is not necessary. This implies that buffer storage is zero if no buffer is installed 

between workstations. According to related studies [5,18] , installation of a buffer between the bottleneck and its upstream 
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