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a  b  s  t  r  a  c  t

A  large  number  of  embedded  wireless  systems  must  handle  complex  and  time-varying  computational  and
communication  workloads.  Further,  a significant  number  of these  systems  support  real-time  applications.
Most  of  the  existing  energy  management  studies  for such  systems  have  focused  on relatively  simple
scenarios  that  assume  deterministic  workloads,  and  only  consider  a limited  range  of  energy  management
techniques,  such as  Dynamic  Voltage  Scaling  (DVS).  Our paper  addresses  these  deficiencies  by  proposing
a  general  purpose  probabilistic  workload  model  for  computation  and communication.  To  account  for  the
importance  of  radio  energy  consumption,  we  also  analyse  Dynamic  Modulation  Scaling  (DMS),  an  often
overlooked  method  for energy  management.  We  define  several  energy  control  algorithms,  including  an
optimal combined  DVS–DMS  approach,  and  evaluate  these  algorithms  under  a  wide  range  of  workload
values  and  hardware  settings.  Our results  illustrate  the  benefits  of joint  power  control  algorithms.

©  2016 Elsevier  Inc.  All  rights  reserved.

1. Introduction

A large class of embedded wireless systems have real-time
performance requirements for both computational and communi-
cation tasks. Examples of such systems include industrial process
control, highway monitoring and building surveillance [1–3]. Many
of these systems are self-powered, so from both a system design
and an environmental perspective efficient energy management is
of paramount importance. System architects use component level
tuning knobs that tradeoff power consumption with performance.
For instance, a commonly used power saving technique is Dynamic
Voltage Scaling (DVS) [4]. DVS controls power consumption by
reducing the CPU frequency and supply voltage, thereby saving
energy expenditure while requiring computations to take longer.
Dynamic Modulation Scaling (DMS) is another type of tuning
technique. DMS  works by changing radio modulation levels and
constellation sizes, reducing energy expenditures while requiring
longer transmission and reception times [5]. DMS  is directly sup-
ported by embedded wireless standards such as 802.15.4 [6]. The
impact of DMS usage on power consumption in wireless embed-
ded systems is relatively understudied. Moreover, for wireless
embedded nodes with both substantial computational and com-
munication workloads, both DVS and DMS  techniques are relevant.
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Though there are a few studies that consider DVS and DMS  simul-
taneously [7,8], those works consider exclusively deterministic
workloads.

This paper addresses that gap by studying the joint use of DVS
and DMS  for real-time embedded wireless systems through the
design of several novel energy management algorithms. We  focus
on systems that have deadline constraints for both computational
and communication tasks. We  are specifically interested in quan-
tifying the impact of these algorithms when both computation and
communication workloads are known only probabilistically. We
believe this is a direction that warrants investigation, as in practical
applications the most important objective is typically to minimize
the expected energy consumption while still providing performance
guarantees. To this aim, we  use probabilistic workload models for
both computation and communication activities. The computa-
tional model uses cycle groups [9–11], a concept that supports the
empirical estimation of an underlying workload probability distri-
bution. We  adopt a similar approach to model the communication
workload.

Our work evaluates seven different algorithms, including a joint
DVS–DMS approach and a computationally simple heuristic. Using
our probabilistic workload, deadline and energy models, the joint
approach formulates the problem as one that can be solved through
convex optimization. We  present an efficient off-line solution to
this problem. Our work is based on the observation that in proba-
bilistic workload settings, the optimal solution consists of starting
with low computation and communication speed levels, and then
gradually increasing the speeds as the task makes progress. We
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Fig. 1. Application model.

show how to compute the optimal speed schedule in which DVS
and DMS  parameters are adjusted to match the current workload
conditions. We  first study the optimal CPU and radio speed sched-
uling algorithms in the continuous speed domain. To account for the
fact that in current hardware design speed levels can only change
by certain step sizes, we extend the solution to cover the discrete
domain.

We  also present a general purpose simulation model that rep-
resents a wide variety of processor and radio types. We  then
describe an extensive simulation study of our various algorithms
with a particular interest in evaluating the benefits of our integrated
DVS–DMS approach under probabilistic workloads and as a func-
tion of the ratio of the radio power to the CPU power, by comparing
to other algorithms, including those that use DVS-only or DMS-only
approaches for energy management.

To our knowledge this is the first study that considers both
DVS and DMS  in a wireless embedded system using probabilis-
tic computation and communication workload models. Our results
precisely quantify the improvements offered by these control tech-
niques as a function of the underlying hardware characteristics,
and can be used by designers as a guideline for algorithm selec-
tion. Of particular importance of this work is the demonstration
of the potential value of DMS  techniques [6]. For instance, our
experimental results show that an integrated DVS–DMS strategy
can provide non-trivial gains on the expected energy consumption,
especially when the computation and communication workloads
are relatively balanced.

The rest of this paper is organized as follows. In Section 2 we
present our power and application models, as well as our assump-
tions. By assuming an ideal system where the CPU frequency and
modulation levels can be adjusted continuously, the energy mini-
mization problem is formulated and solved in Section 3. Assuming
discrete frequency and modulation levels, the same problem is
formulated as a mixed binary integer programming problem in
Section 4. In Section 5, a detailed performance evaluation of sev-
eral algorithms, including optimal algorithms, fast heuristics and
those that use only the DVS or DMS  feature, is presented. Section 6
surveys related work, and we conclude in Section 7.

2. System model

This section describes the application model, presents the
system level energy components and shows how to derive the
expected energy.

2.1. Application model

We  consider an embedded wireless node with two  major activ-
ities: data processing (computation), performed by the CPU, and
communication with other wireless embedded devices, performed
by the radio. Specifically, as in [7], we assume that computation
and communication activities form two sub-tasks, executed within
a frame (Fig. 1). A frame is a time interval of length D that repeats
periodically during the lifetime of the node with the rate 1/D. Input
to the radio communication sub-task depends on the output of
the computation sub-task; consequently, the latter is to be exe-
cuted first in each frame. Both sub-tasks must be completed within
a relative deadline of D, by the end of frame. The sub-tasks may

Fig. 2. Histogram-based approximation of the cumulative distribution function of
the  application’s probabilistic workload.

have varying resource demands from frame to frame, determined
according to specific probability distributions, as explained below.

2.1.1. Computation workload
In real applications, the number of CPU cycles in a given frame

(the computation workload) can be known only probabilistically in
advance. We  denote the minimum and maximum computational
workload demand in a single frame by Cmin and Cmax cycles, respec-
tively. In general, the cumulative probability distribution function
for the computation workload is:

F(c) = p(X ≤ c)

where X is the random variable for the application’s computa-
tion demand in a frame, and p(X ≤ c) represents the probability
that the application will not require more than c cycles in a single
frame. This function can be approximated through the histogram-
based profiling approach [9,12,13]. Specifically, the available range
of CPU cycles [Cmin, Cmax] is divided into W discrete cycle groups,
each with ω = (Cmax − Cmin)/(W)  cycles. We denote the upper bound
on the number of cycles in the ith cycle group as �i, that is,
�i = Cmin + (i − 1) · ω.

The workload probability distribution function may  be obtained
by multiple means. One approach is profiling over a fixed window
size for workloads with self-similarity property [14]. In general, to
obtain the histogram-based profiles, the application’s executions
over a long time interval is monitored, and the fraction of invo-
cations in which the number of actual cycles fall in the ith cycle
group are recorded [9–11]. More precisely, the fraction of invoca-
tions where the number of executed cycles falls in the ith cycle
group during the profiling phase, is assumed to correspond to the
probability that the number of cycles will fall in this specific range
over a long-term periodic execution. In this way, the probability
that the actual number of cycles needed by the application will fall
in the range (�i−1, �i], denoted by f cp

i
, is derived for i = 1, . . .,  W.

Observe that
∑W

i=1f
cp
i

= 1.
We can calculate the cumulative probability distribution func-

tion (Fig. 2) of the application’s cycle demand as:

Fcp
j

=
j∑
k=1

f cp
k

Fcp
j

denotes the probability that the application will require no
more than j cycle groups (i.e., at most Cmin + (j − 1) · ω cycles) in
one frame. Consequently, � cp

j
= 1 − Fcp

j−1 is the probability that the
task will require more than (j − 1) cycle groups, or equivalently, the
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