
Sustainable Computing: Informatics and Systems 12 (2016) 34–42

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom epage: www.elsev ier .com/ locate /suscom

Software power modeling method at architecture level based on
complex networks

Deguang Lia, Bing Guoa,∗, Yan Shenb, Junke Lia, Yanhui Huanga

a College of Computer Science, Sichuan University, Chengdu 610065, China
b School of Control Engineering, Chengdu University of Information Technology, Chengdu 610225,China

a r t i c l e i n f o

Article history:
Received 19 January 2016
Received in revised form 30 June 2016
Accepted 30 August 2016
Available online 4 November 2016

Keywords:
Software power modeling
Architecture
Complex networks
BP neural network
Network characteristics of software

a b s t r a c t

The architecture of software systems can be naturally represented in the form of complex networks,
especially for object-oriented software. Software as a kind of artificial complex networks, where entities
of the software are nodes and interactions between entities are edges. These interactions are data-flows,
instruction-flows and control-flows of the software, and these flows driving hardware circuit is the inter-
nal cause of power consumption of software. In this paper, we model software systems as complex
networks at architecture level, assuming that the relation between the network characteristics of soft-
ware and its power consumption is nonlinear. Based on this assumption, we propose a software power
modeling method at architecture level. The model first measures network characteristics of software and
then fit the nonlinear relation between the network characteristics of software and its power consump-
tion by BP neural network. Experimental results show that our model could accurately estimate power
consumption of the software, and the error is less than 11.2% compared to the measured value, which
indicates our assumption is reasonable and our model is effective.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, power dissipation and energy saving have
acquired comprehensive concerns. According to a report of Gart-
ner entitled “Green IT: a new wave of industry impact” in 2007,
carbon emissions of ICT (Information and Communications Tech-
nology) equipment one year accounts for about 2% of global carbon
emissions, they pointed out that when we Google once, the energy
consumed is equal to that consumed by boiling half pot of water
[1]. Meanwhile, the power consumed by ICT equipment accounts
for 10% of all power consumption of the United Kingdom in 2008,
and 8% for the United States. With internet of things, cloud com-
puting and new information technology applications developing,
global ICT industry is still growing rapidly. According to a forecast
by METI in 2010 [2], the power consumed by ICT equipment is fore-
casted to reach about 20% of all power consumed worldwide by
2025.

Computer system is a typical system controlled by software,
which directly drives the underlying hardware. For example, dif-
ferent instruction execution, data access operation and other
operations of the software drive the underlying hardware circuit,

∗ Corresponding author.
E-mail addresses: lideguang.00@163.com (D. Li), guobing@scu.edu.cn (B. Guo).

which indirectly result in power generation. Thus we can conclude
that software is the consumer and manager of hardware, software
itself does not cause energy consumption, energy consumption is
“by-products” of software execution. Also we can say that software
consumes energy actively and determines energy consumption of
computer system. In order to have a better understanding and
improve energy efficiency of computer system, much research has
been done from different aspects. Such as upgrade manufactur-
ing process, change circuit structure at circuit level [3,4]; compiler
optimization, instruction transformation, instruction rearrange-
ment, loop structure optimization and power analysis at instruction
layer [8–11]; expression changes, optimizing data representa-
tion, program structure rearrangement, elimination of redundant
computation, compressed data storage space, algorithm selection
and estimation of energy consumption and execution time at
source code level [10–15]; estimating the energy consumption of
pervasive Java-based software and distributed Java-based at com-
ponent level [20,21] and fine-grained power management using
process-level profiling at process level [22–24]; high-level software
energy macro-modeling, system structure selection, transforma-
tion and simplification at architecture level [24,21]; and power
management technique at system level, such as DPM, DVS, RTOS
task scheduling, cooperative game theoretical technique which
presents dynamic method for voltage-scaling based task scheduling
for simultaneous optimization of performance, energy, and tem-

http://dx.doi.org/10.1016/j.suscom.2016.08.002
2210-5379/© 2016 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.suscom.2016.08.002
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2016.08.002&domain=pdf
mailto:lideguang.00@163.com
mailto:guobing@scu.edu.cn
dx.doi.org/10.1016/j.suscom.2016.08.002

D. Li et al. / Sustainable Computing: Informatics and Systems 12 (2016) 34–42 35

perature under dynamically varying task and system conditions
[22–29].

While software power consumption measuring and estima-
tion is the basis of software power optimization, current software
power consumption measuring and estimating method has differ-
ent levels and granularity, including hardware-based level [5–7];
instruction level [8–13]; source code level [16–21]; software
component level [25,26] process level [27–29] and architecture
level [30–32]. Hardware-based power measuring method always
leverages multimeter to sample the current and voltage of the
software and then calculates energy consumption of the software;
Instruction-level power model first measures power consumption
of each assembly instruction, and then calculates whole power con-
sumption by summating all instructions of the program; while
source code level power model first recodes execute paths and
power consumption of the software, then calculates power con-
sumption of each line of the code by linear regression; component
level power model which estimates energy consumption of soft-
ware component by combining construction-time estimation and
runtime estimation; architecture level modeling focuses on high
level characteristics of software, finds the relation between the
characteristics and its power consumption, which can quickly ana-
lyze and forecast energy consumption of the software. However,
research on building power model at architecture level is few.
Software as a kind of artificial complex system, especially for
object-oriented software, its architecture can be naturally rep-
resented in the form of complex networks and many studies
investigate different characteristics of the software from this per-
spective [34–39]. Inspired by this, we try to explore software power
model at architecture level based on complex networks in this
paper.

First we model software as complex networks, analyze different
network characteristics of software and their influence on soft-
ware power consumption. These network characteristics include
number of nodes, number of directed edges, average path length,
clustering coefficient and average degree of the software. Then we
assume that the relation between these network characteristics of
software and its power consumption is nonlinear, and we use BP
neural network to fit the nonlinear relation. Finally we validate
our model by experiments and the results show our model can
achieve 11.2% error compared to measured value, which indicates
our assumption is reasonable and our model is effective. Thus our
contributions in this paper are:

(1) A software power model at architecture level is proposed in this
paper, which can estimate power consumption of the software
with small error and meet requirements of high level software
power modeling.

(2) We test our power model on real computer platforms and
the results validate the rationality of our assumption and our
method of measuring network characteristics of software is
effective.

(3) Our experiment proves that software power consumption
could be analyzed from high level, which has important mean-
ing for low-power software design at architecture level.

2. Related work

Many software power models have been put forward from dif-
ferent levels, including hardware-based level [5–7], instruction
level [8–13], source code level [16–21], software component level
[25,26], process level [27–29] and architecture level [30–32]. Now
we have a brief introduction to each model.

2.1. Hardware-based level

Hardware-based power measurements [5–7] mainly are divided
into three types, which are power measurement with meters [5],
measurement with special designed devices [6] and measurement
by integrating sensors into hardware [7]. Direct power measure-
ment with meters is a straight forward method to understand the
power dissipation of devices and the full system, the differences of
various measurement methods are which type of meters is used to
do the measurement and at which place it is done. Though direct
measurement with meters is simple, it does not supply methods to
control the process of the measurement process, thus some special
designed power measurement devices are presented to measure
the power in these circumstances. The third type of approach is
mainly used in high-performance servers, which are integrated
with power sensors to monitor the power consumed, and then
this information is supplied to the administrator for power man-
agement. Although we can get power information accurately by
hardware, this method requires professional knowledge and it does
not easy to operate for ordinary users.

2.2. Instruction level

Tiwari [8–10] first put forward the concept of software power
consumption and proposed instruction-level power model, which
was shown in Formula (1), total power consumption Ep of the pro-
gram p is composed of three parts:

Ep =
∑

i
Bi × Ni +

∑
i,j

(Oi,j × Ni,j) +
∑

k
Ek (1)

Bi is the base power cost of instruction i, Oi, j is the power con-
sumption caused by circuit state switch between instruction i and
instruction j. Ek is the power consumption caused by other effects
between instructions (such as pipeline stalls, Cache miss, etc. . .),
all of them are determined by corresponding hardware circuit. Ni

is execution times of the instruction i, Ni,j is the number of occur-
rences in the program, all these two parameters are determined
by program execution path, path information can be obtained by
dynamic analysis of the program. The model helps in formulating
instruction level power models which provides the fundamental
information needed to evaluate power cost of the entire programs,
and has been applied to two commercial microprocessors: Intel
486DX2 and Fujitsu SPARClite 934. Based on the instruction power
model, Nikolaidis [6] and Leite [7] proposed fine-grained approach
for power consumption analysis and prediction, also put forward
new methods for low power applications.

2.3. Source code level

Brandolese [16] presented a fully automatic method which
combines instruction-level simulation and static-time source
characterization for estimating the execution time and power con-
sumption of a C program, also Julien [18] proposed functional
approach for estimating the power of an algorithm directly from
the C code without compilation. Šimunić [17] employed a profiler,
which exploits a cycle-accurate energy consumption simulator to
relate the embedded system energy consumption and performance
to the source code. Li [19] put forward a power model at source code
level, which is implemented by combining hardware-based power
measurements with program analysis [22] and statistical modeling.
First they recorded code execution paths and their power consump-
tion information by hardware profiling tool as software running,
and then used linear regression to calculate the power consumption
of each line by the statistical path information and energy con-
sumption. What’s more, they put forward software power model at
method level and byte-code level [23] based on source code power

Download English Version:

https://daneshyari.com/en/article/4962798

Download Persian Version:

https://daneshyari.com/article/4962798

Daneshyari.com

https://daneshyari.com/en/article/4962798
https://daneshyari.com/article/4962798
https://daneshyari.com

