
Please cite this article in press as: C.M. Angerer, et al., A fast, hybrid, power-efficient high-precision solver for large linear systems based
on low-precision hardware, Sustain. Comput.: Inform. Syst. (2015), http://dx.doi.org/10.1016/j.suscom.2015.10.001

ARTICLE IN PRESSG Model
SUSCOM-131; No. of Pages 11

Sustainable Computing: Informatics and Systems xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

A fast, hybrid, power-efficient high-precision solver for large linear
systems based on low-precision hardware

C.M. Angerer ∗, R. Polig, D. Zegarac, H. Giefers, C. Hagleitner, C. Bekas, A. Curioni
IBM Research – Zurich, Säumerstrasse 4, Rüschlikon, Switzerland

a r t i c l e i n f o

Article history:
Received 25 June 2014
Received in revised form
11 September 2015
Accepted 8 October 2015
Available online xxx

Keywords:
Hybrid computing
Heterogeneous computing
Hardware acceleration
Power-efficient linear system solving
GPU
Field programmable gate arrays

a b s t r a c t

In recent years, the amount of data produced has been exploding at a rate far greater than the increase
in computing power of even large supercomputers. As a result, modern computer systems are unable to
analyze all the available data – a situation that will become even worse in the foreseeable future. We
follow an approach to data analytics where the computational complexity is fundamentally reduced by
performing the majority of the computation in an approximated or even stochastic framework while the
high precision solution is guaranteed by an iterative refinement process.

This paper presents a parallel heterogeneous system implementing a mixed-precision iterative refine-
ment solver for large linear systems, which is a building block for many other complex algorithms. In
our solver, the backward step is implemented as a novel variant of the conjugate gradient (CG) method
running on an FPGA using fixed point data types. The low precision of the backward step is compensated
for by the forward step running in high precision on a GPU, which iteratively updates the current solution
until a given working precision has been reached.

We have implemented our CG solver using Altera’s OpenCL SDK for FPGAs and use NVIDIA’s CUBLAS
library for the forward step on the GPU. Through the combination of GPU and FPGA we were able to
achieve a speedup of 3.7× for large dense 24,064 × 24,064 matrices and require 3.5× less energy per
solved right-hand side compared to a tuned multi-threaded CPU solver based on the ATLAS linear algebra
library.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Modern applications produce data at previously unimaginable
rates. The growth in available data significantly exceeds the rate at
which we improve even our best supercomputers. In effect, solely
relying on power and performance improvements of the hardware
is not enough to catch up with the growing amount of data.

In order to address the increasing gap between workload and
available compute power, we follow an approach to data analytics
where the majority of the computation is performed in an approx-
imated or even stochastic way while the final result is achieved in
a high working precision through an iterative process.

Many critical data analytics applications in key disciplines such
as engineering, medicine, physics, machine learning, statistics,

∗ Corresponding author. Tel.: +49 15118904142.
E-mail addresses: han@zurich.ibm.com (C.M. Angerer),

pol@zurich.ibm.com (R. Polig), dze@zurich.ibm.com
(D. Zegarac), hgi@zurich.ibm.com (H. Giefers), hle@zurich.ibm.com (C. Hagleitner),
bek@zurich.ibm.com (C. Bekas), cur@zurich.ibm.com (A. Curioni).

finance, and big data can be formulated as an iterative refinement
problem with three basic steps:

1. In a solving step, compute an approximate solution. This is the
computationally expensive part.

2. In a subsequent update step, compute the remaining error and
adapt the current solution. Compared to the backward step, com-
puting the error is often a relatively inexpensive operation.

3. Repeat with Step 1 until the desired high precision is achieved.

While Step 1 affects the convergence speed of the overall solving
process, the precision of the final result is achieved only by Step
2 and Step 3. The insight underlying our research is that for many
problems the iterative refinement process converges quickly even if
Step 1 produces perturbed inexact solutions with a relatively large
error [2]. By exploring ways to trade the precision of Step 1 for an
improvement in power and performance, we can tune the overall
system performance to a given problem.

In this paper we present a parallel heterogeneous system imple-
menting a mixed-precision iterative refinement solver. In our
system, the solving Step 1 is implemented as a novel bounded

http://dx.doi.org/10.1016/j.suscom.2015.10.001
2210-5379/© 2015 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.suscom.2015.10.001
dx.doi.org/10.1016/j.suscom.2015.10.001
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:han@zurich.ibm.com
mailto:pol@zurich.ibm.com
mailto:dze@zurich.ibm.com
mailto:hgi@zurich.ibm.com
mailto:hle@zurich.ibm.com
mailto:bek@zurich.ibm.com
mailto:cur@zurich.ibm.com
dx.doi.org/10.1016/j.suscom.2015.10.001

Please cite this article in press as: C.M. Angerer, et al., A fast, hybrid, power-efficient high-precision solver for large linear systems based
on low-precision hardware, Sustain. Comput.: Inform. Syst. (2015), http://dx.doi.org/10.1016/j.suscom.2015.10.001

ARTICLE IN PRESSG Model
SUSCOM-131; No. of Pages 11

2 C.M. Angerer et al. / Sustainable Computing: Informatics and Systems xxx (2015) xxx–xxx

variant of the Conjugate Gradient (CG) method running on a custom
FPGA design. Further, the update and error computation of Step
2 is done on a GPU, and a CPU-based host is managing the over-
all flow of computation associated with Step 3. Our system design
allows for relaxing the accuracy of the inner solver in a controlled
way:

Small number of CG iterations. In the inner CG solver, we use a (com-
pared to the matrix size n) small number of iterations i � n. The
overall cost of one run of the inner solver is then O(i * n2) ≡ O(n2)
because the cost of each CG step is dominated by a matrix–vector
product.

Fixed point data types with configurable bit widths. All vector and
matrix elements in our CG solver have tight bounds in the inter-
val [−1,1]. This interval allows us to use a fixed point number
representation with no integer bits and a per-vector/matrix con-
figurable number of fractional bits: Each bit added increases
memory consumption but also improves the precision.

Sparsification. When transforming the matrix A from floating point
to low-precision fixed point, we divide A into two (or more)
slices containing the most significant bits Amsb and least sig-
nificant bits Alsb. By combining the corresponding elements in
the different slices, we can step-wise adapt the precision of the
matrix multiplication at runtime. For a preconditioned matrix A,
Amsb tends to become sparse, meaning that most of its elements
are zero. We exploit this fact by applying a sparse matrix mul-
tiplication instead of a dense matrix multiplication during the
low-precision rounds.

The main contributions of this paper are:

• A variant of the Conjugate Gradient method with mostly bounded
values that can be implemented using fixed point data types or
a combination of fixed point and floating point types to get the
advantages of both representations.
• A heterogeneous hardware design and architecture implemen-

ting a mixed-precision iterative refinement method around our
bounded CG algorithm. The host can dynamically adapt the pre-
cision of the CG solver in each round, enabling the system to trade
precision for performance and power consumption.
• A thorough evaluation of power and performance characteristics

for large dense linear systems. We evaluate multiple variations
of our hardware design for different combinations of float/fixed
point representations and different matrix.

The remainder of the paper is organized as follows. Section 2
presents some mathematical background on the Conjugate Gradi-
ent Method and mixed-precision iterative refinement. The changes
we apply to the CG algorithm and the data types used are discussed
in Section 3. Section 4 describes the architecture of our hardware
design, which we evaluate in Section 5. Finally, Section 6 presents
related work before we conclude in 7.

2. Background

This section presents some mathematical background for the
Conjugate Gradient Method and mixed-precision iterative refine-
ment.

2.1. Conjugate Gradient method

The Conjugate Gradient method [13] is an iterative method for
solving large systems of linear equations of the form Ax = b, where
b and x are vectors of length n and the n × n square matrix A is

symmetric (i.e., AT = A) and positive definite (i.e., for every nonzero
vector x, xTAx > 0).

Algorithm 1 shows the CG algorithm. Most of the work of the
CG solver is done in the loop between lines 5 and 14. The com-
putationally most expensive operation is by far the matrix–vector
multiplication on line 6 at the beginning of the loop. The tail of the
loop consists of two vector dot products on lines 7 and 11 as well
as vector additions with scaling on lines 8, 9, and 12. The remaining
operations are simple scalar divisions.

Algorithm 1. The Conjugate Gradient Algorithm

Input: Matrix A, vector b, error tolerance �
Output: x such that ||Ax − b||2 ≤ �||b||2
1: d ← b
2: r ← b
3: ı0← rTr
4: ınew← ı0

5: repeat
6: q ← Ad
7: ̨ ← ınew

dT q

8: x ← x + ˛d
9: r ← r − ˛q
10: ıold← ınew

11: ınew← rTr
12: ̌ ← ınew

ıold

13: d ← r + ˇd
14: until ınew ≤ �2ı0

CG can be run as a stand-alone solver or it can be used, as done in
this work, as the inner solver in an iterative refinement context. We
chose the CG method due to a number of valuable computational
properties:

1. Unlike other dense methods, such as Cholesky factorization, CG
does not alter the original matrix A and it does not require addi-
tional storage for matrix factors such as triangular matrices.

2. For a given matrix size n, the memory requirement of CG is
constant.1 As can be seen from Algorithm 1, the CG solver only
needs to keep the 4 vectors of length n: d, q, x, and r.

3. In exact arithmetic, CG would converge in at most n steps. In
practice, rounding errors may require CG to run in �n steps
before it finds a solution with the requested precision. However,
an approximation that allows the outer iterative refinement to
progress towards the solution is usually found in �n CG steps.

4. CG is based on matrix–vector products and vector dot-
products which are operations that can be well parallelized in
hardware.

2.2. Mixed-precision iterative refinement

Mixed-precision iterative refinement is a well-known method
[20,10] that exploits the higher performance of modern hard-
ware for single precision operations while still guaranteeing a
high precision result. In fact, provided that the system is not too
ill-conditioned mixed-precision iterative refinement produces a
solution correct to the working precision.

The underlying idea of mixed-precision iterative refinement is
to iteratively update an approximated high precision solution with
a low-precision error correction term. The error correction term is
hereby computed by an inner correction solver, such as a CG solver
presented in the previous section.

1 This is in fact true for all Krylov subspace methods, which build an orthonormal
basis through a simple three term recurrence of the basis vectors.

dx.doi.org/10.1016/j.suscom.2015.10.001

Download English Version:

https://daneshyari.com/en/article/4962803

Download Persian Version:

https://daneshyari.com/article/4962803

Daneshyari.com

https://daneshyari.com/en/article/4962803
https://daneshyari.com/article/4962803
https://daneshyari.com

