ARTICLE IN PRESS

Swarm and Evolutionary Computation xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem

Jian Lin^{a,*}, Zhou-Jing Wang^a, Xiaodong Li^b

^a School of Information, Zhejiang University of Finance & Economics, Hangzhou 310018, China
 ^b School of Science (Computer Science and IT), RMIT University, Melbourne, VIC 3001, Australia

ARTICLE INFO

Keywords: Hyper-heuristic Backtracking search algorithm Distributed assembly Flow-shop scheduling

ABSTRACT

Distributed assembly permutation flow-shop scheduling problem (DAPFSP) is recognized as an important class of problems in modern supply chains and manufacturing systems. In this paper, a backtracking search hyperheuristic (BS-HH) algorithm is proposed to solve the DAPFSP. In the BS-HH scheme, ten simple and effective heuristic rules are designed to construct a set of low-level heuristics (LLHs), and the backtracking search algorithm is employed as the high-level strategy to manipulate the LLHs to operate on the solution space. Additionally, an efficient solution encoding and decoding scheme is proposed to generate a feasible schedule. The effectiveness of the BS-HH is evaluated on two typical benchmark sets and the computational results indicate the superiority of the proposed BS-HH scheme over the state-of-the-art algorithms.

1. Introduction

Production scheduling has been a very active research area because of its practical significance in decision-making of manufacturing systems [1-4]. As one of the most studied scheduling problems, the permutation flow-shop scheduling problem (PFSP) is an extensively investigated combinatorial optimization problem in manufacturing systems and industrial processes. The PFSP with the makespan criterion has been proven to be NP-hard when the number of machines are no less than three [5]. Following the pioneering work of Johnson [6], many approaches have been proposed to solve the PFSP [7-18]. A common assumption among these studies is that there is only a single production center or factory, and all jobs in the permutation are assigned to the same factory. However, production systems with more than one production center (namely, a distributed manufacturing system) is more common in practice [19-23], since it can achieve higher product quality while reducing production distribution costs and management risks [24]. Scheduling in distributed systems is more challenging than in regular shop scheduling problems; in particular, job allocation to factories and job scheduling at each factory must be both considered when making decisions.

Recently, an extension of the regular PFSP called the distributed assembly permutation flow-shop scheduling problem (DAPFSP) was introduced by Hatami *et al.* [25], where a set of products and a set of factories are combined with the regular PFSP. Each job in the DAPFSP belongs to one product and is processed in one factory. All products are

assembled in a single assembly factory with an assembly machine. Hatami *et al.* [25] also considered the minimization of makespan at the assembly factory and presented 14 heuristics based on constructive heuristics and variable neighborhood descent (VND). In [26], an estimation of distribution algorithm based memetic algorithm (EDAMA) was developed for solving the DAPFSP with the objective to minimize the maximum completion time. In our previous work [27], an effective hybrid biogeography-based optimization (HBBO) algorithm that integrates several novel heuristics is proposed to solve the DAPFSP.

A recent trend in search and optimization suggests that hyperheuristic has emerged as an effective search methodology that controls other heuristics to provide near-optimal solutions for various problems [28,29]. Instead of searching directly in the solution space, hyperheuristics operate on a set of low-level heuristics (LLHs), and attempt to find an optimal sequence of heuristics [30]. During the past few years, there is a growing literature in the field of hyper-heuristics [28]. In particular, meta-heuristics have been used to construct hyperheuristic schemes, e.g., a particle swarm optimization based hyperheuristics by Sanz et al. [31], evolutionary hyper-heuristics by Sanz et al. [32] and Moreno et al. [33], a harmony search based hyper-heuristic by Anwar et al. [34], and a bacterial foraging based hyper-heuristic by Rajni and Chana [35]. However, to the best of our knowledge, there is no hyper-heuristic approach for solving the DAPFSP.

The motivation behind this paper is to propose a hyper heuristic

http://dx.doi.org/10.1016/j.swevo.2017.04.007

^{*} Corresponding author.

E-mail address: linjian1001@126.com (J. Lin).

Received 8 January 2017; Received in revised form 15 April 2017; Accepted 26 April 2017 2210-6502/ © 2017 Elsevier B.V. All rights reserved.

based scheduling algorithm which would be applicable in solving the DAPFSP. The backtracking search optimization algorithm (BSA) [36] is a newly developed powerful evolutionary algorithm, which has been proved to be very promising when compared with other evolutionary algorithms (EAs) [36–40]. Especially, BSA is a dual-population algorithm that uses the current as well as the historical populations, and also has a simple structure. This paper aims at employing an effective backtracking search hyper-heuristic (BS-HH) algorithm to solve the DAPFSP with the objective of minimizing the makespan value. In BS-HH, the BSA is used as the high-level hyper-heuristic strategy, which manages solution methods rather than solutions, and employs a set of designed LLHs. Experiments and comparisons are conducted on two sets of benchmarks provided in Hatami *et al.* [25] to verify the effectiveness of the proposed scheme.

The rest of the paper is organized as follows. In Section 2, the DAPFSP is briefly introduced. In Section 3, the BS-HH scheme is proposed for the DAPFSP. The computational results on benchmark instances together with comparison to some state-of-the-art algorithms are presented in Section 4. Finally, a conclusion is drawn in Section 5.

2. Distributed assembly permutation flow-shop scheduling problem

As illustrated in Fig. 1, DAPFSP [25,27] is a combination of the distributed PFSP and the assembly flow-shop scheduling problem, which consists of two stages: production and assembly, and can be generalized into three sub-problems: job scheduling, product scheduling and factory assignment. The notations used in the optimization model of DAPFSP are presented in Table 1.

In the production stage, there are *n* jobs $\{J_1, J_2, ..., J_n\}$ to be processed in *F* identical factories. All factories are capable of processing all jobs, and each factory can be considered as a PFSP with *m* machines $\{M_1, M_2, ..., M_m\}$. Each job J_i requires a sequence of operations $\{O_{i1}, O_{i2}, ..., O_{im}\}$ to be processed one after another on *m* machines. In the assembly stage, there is an assembly factory with a single assembly machine M_A which assembles all jobs into *H* different products $\{P_1, P_2, ..., P_H\}$. Each product P_h has N_h jobs, with these jobs first processed in the production stage before assembling into the product P_h ; hence, $\sum_{h=1}^{H} N_h = n$. In this paper, the maximum completion time (makespan) at the assembly factory is the objective to minimize.

Let $\pi_h^f = [\pi_h^f(1), \pi_h^f(2), ..., \pi_h^f(n_h^f)]$ be the sequence of jobs in factory f(f = 1, ..., F) that belong to product P_h , where $n_h^f(n_h^f < N_h)$ is the total number of jobs in product P_h assigned to factory $f \cdot C_{M_A,h}$ and $C_{i,j}$ denote the completion time of product P_h on assembly machine M_A and the

Swarm and Evolutionary Computation xxx (xxxx) xxx-xxx

Table 1

The notations used in the optimization model for the DAPFSP.

Indices	
i	Index for jobs where $i = 1,, n$
j	Index for machines where $j = 1,, m$
h	Index for products where $h = 1,, H$
f	Index for factories where $f = 1, 2,, F$
k	Index for jobs in product P_h assigned to factory f where
	$k=2,\ldots,n_h^f$
Parameters	
n	The number of jobs
m	The number of machines
F	The number of factories
Н	The number of products
P_{ij}	The processing time of operation O_{ij} on machine M_j
N _h	The number of jobs belongs to product P_h
Q_h	The processing time to assemble product P_h
Λ	A given feasible schedule
Variables	
n_h^f	The total number of jobs in product P_h assigned to factory f
π_h^f	The sequence of jobs in factory f that belong to product P_h where
	$\pi_h^f = [\pi_h^f(1), \pi_h^f(2),, \pi_h^f(n_h^f)]$
$C_{i,j}$	The completion time of operation O_{ij} on machine M_j
$C_{M_A,h}$	The completion time of product P_h on assembly machine M_A
C _{max}	Makespan value

operation O_{ij} on machine M_j , respectively. For a schedule Λ of the DAPFSP, i.e., a set of sequences $\{\pi_1^f, \pi_2^f, \dots, \pi_H^f\}$, the makespan $C_{\max}(\Lambda)$ is given by:

$$C_{\pi_h^f(1),1} = p_{\pi_h^f(1),1}, f = 1, 2, \dots, F; h = 1, 2, \dots, H,$$
(1)

$$C_{\pi_h^f(k),1} = C_{\pi_h^f(k-1),1} + p_{\pi_h^f(k),1},$$

$$f = 1, 2, \dots, F; \ k = 1, 2, \dots, n_h^f; \ ; \ h = 1, 2, \dots, H ,$$
(2)

$$C_{\pi_h^f(1),j} = C_{\pi_h^f(1),j-1} + p_{\pi_h^f(1),j},$$

$$f = 1, 2, ..., F; j = 1, 2, ..., m; ; h = 1, 2, ..., H ,$$
(3)

$$C_{\pi_h^f(k),j} = \max \left\{ C_{\pi_h^f(k-1),j}, C_{\pi_h^f(k),j-1} \right\},\$$

$$f = 1, 2, ..., F; k = 2, ..., n_h^f; j = 1, 2, ..., m; h = 1, 2, ..., H,$$
(4)

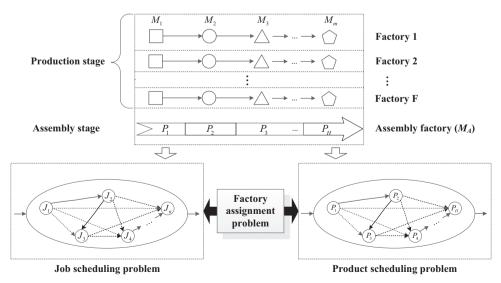


Fig. 1. Illustration of the DAPFSP.

Download English Version:

https://daneshyari.com/en/article/4962816

Download Persian Version:

https://daneshyari.com/article/4962816

Daneshyari.com