
Applied Soft Computing 13 (2013) 1419–1432

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho mepage: www.elsev ier .com/ locate /asoc

Self-Optimization module for Scheduling using Case-based Reasoning

I. Pereira ∗, A. Madureira
GECAD, Knowledge Engineering and Decision Support Research Center, Institute of Engineering – Polytechnic of Porto (ISEP/IPP), Porto, Portugal

a r t i c l e i n f o

Article history:
Received 20 December 2011
Received in revised form 27 January 2012
Accepted 3 February 2012
Available online 3 March 2012

Keywords:
Autonomic Computing
Case-based Reasoning
Learning
Meta-heuristics
Multi-Agent Systems
Scheduling

a b s t r a c t

Metaheuristics performance is highly dependent of the respective parameters which need to be tuned.
Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The
process of defining which parameters setting should be used is not obvious. The values for parameters
depend mainly on the problem, the instance to be solved, the search time available to spend in solving
the problem, and the required quality of solution.

This paper presents a learning module proposal for an autonomous parameterization of Meta-
heuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems.

The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defin-
ing that systems must continuously and proactively improve their performance. For the learning
implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In
the use of Case-based Reasoning it is assumed that similar cases have similar solutions.

After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are
described. Finally, a computational study is presented where the proposed module is evaluated, obtained
results are compared with previous ones, some conclusions are reached, and some future work is referred.

It is expected that this proposal can be a great contribution for the self-parameterization of Meta-
heuristics and for the resolution of scheduling problems on dynamic environments.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The exponential growth of computational capacity together
with the appearance of network communication, mainly Inter-
net, led companies to invest significantly in infrastructures and
computational applications. These systems are subject to failures,
dynamism, overloads, and others, due to exponential growth of its
complexity. Generally, organizations invest more in maintenance
than in development. With the prediction of a “breaking point”,
in October 2001, Paul Horn, vice-president of IBM Research, gave
some visibility to this problem launching an IBM challenge named
Autonomic Computing (AC) [1].

An autonomous system is viewed as a system with the ability
of self-management. The objective of these systems is to free users
from repetitive tasks, enabling a full-time execution, and providing
enough intelligence to be possible to take decisions in order to reach
an objective [2].

In recent years, there has been a growing interest in decentral-
ized approaches for the resolution of complex real world problems,

∗ Corresponding author at: GECAD, Dr. António Bernardino de Almeida, 431, 4200-
072 Porto, Portugal. Tel.: +351 22 8340500; fax: +351 22 8321159.

E-mail address: iasp@isep.ipp.pt (I. Pereira).
URL: http://www.gecad.isep.ipp.pt/ (I. Pereira).

like Scheduling, as the number of proposed solutions and successful
implementations is increasing. It is possible to highlight Multi-
Agent Systems (MAS), which concern with behaviors’ coordination
of a set of agents, in order to share knowledge, abilities, and objec-
tives, in the resolution of complex problems. Due to the exponential
growing of system’s complexity, it is important that MAS become
more autonomous to deal with dynamism, overloads and failures
recovery.

MAS typically operate in open, complex, dynamic, and unpre-
dictable environments. It is not possible to predict every situation
that an agent can find so it is necessary that agents have the abil-
ity to adapt to new situations. Since intelligence implies a certain
degree of autonomy, requiring the capacity of taking decisions
autonomously, agents must have the appropriate tools to take such
decisions. Therefore learning becomes, many times, indispensable
[3].

Biological and natural processes have been a source of inspira-
tion for computer science and information technology, which led to
the development of techniques that converge, in general, to satis-
factory solutions in an effective and efficient way, generally named
Meta-heuristics (MH) [4]. MH have often been shown to be effec-
tive for difficult combinatorial optimization problems appearing in
several industrial, economic, and scientific domains [5–10].

Since MH parameterization revealed to be a hard task, requir-
ing expertise knowledge about the application domain and which

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2012.02.009

dx.doi.org/10.1016/j.asoc.2012.02.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:iasp@isep.ipp.pt
dx.doi.org/10.1016/j.asoc.2012.02.009

1420 I. Pereira, A. Madureira / Applied Soft Computing 13 (2013) 1419–1432

techniques and parameters should be used, it is important to turn
systems capable of autonomously parameterize themselves. To
validate this self-parameterization, we use learning about past
experience, with Case-based Reasoning (CBR) revealing to be a
promising approach. Using CBR, systems can remember past effec-
tively solved cases and autonomously decide which MH and
parameters to use for the resolution of a new similar problem [11].

With this, we propose using MAS, MH, AC, together with
learning capabilities, to improve the resolution of the Dynamic
Scheduling problem, with the objective of maximizing the qual-
ity of solutions, minimizing the computational time spent, and also
reducing the human intervention.

The remaining sections are organized as follows. Section 2
describes the Dynamic Scheduling problem and Section 3 presents a
literature review of AC, MH, MAS, and CBR applications for Schedul-
ing. In Section 4 AutoDynAgents system is presented and the
Self-Optimizing Module is described in Section 5, which was inte-
grated in AutoDynAgents. The computational study is presented in
Section 6 and, finally, the paper presents some conclusions and puts
forward some ideas for future work.

1.1. Dynamic Scheduling problem

Scheduling problems arise in a diverse set of domains, ranging
from manufacturing to transports, hospitals settings, computer and
space environments, amongst others, most of them characterized
by a great amount of uncertainty that leads to significant dynamism
in the system. Such dynamic scheduling is getting increased atten-
tion between researchers and practitioners [12,13].

The dynamism can arise from requirements of a new user or
from the evolution of the external environment. In a more general
way, dynamic changes can be seen as a set of inserted and cancelled
constraints.

Dynamic optimization problems environments are often impos-
sible to avoid in practice. For these, the optimization algorithm
must continuously find the optimum in dynamic environments,
or find a robust solution that is capable of operate optimally in
the occurrence of perturbations, instead of simply locate the global
optimum solution [14].

In spite of all research made so far, the scheduling problem is still
known to be NP-complete, even for static environments [12]. This
fact presents serious challenges to conventional algorithms and
incites researchers to explore new directions. Multi-Agent tech-
nology has been considered an important approach for developing
industrial distributed systems [15].

The scheduling problem treated in this work has some major
extensions and differences compared to the classic Job-Shop
Scheduling Problem (JSSP), named Extended Job-Shop Scheduling
Problem (EJSSP), proposed by Madureira [16]. The main elements
of EJSSP problem can be modeled as:

(1) a set of multi-operation jobs J1, . . ., Jn has to be scheduled on a
set of machines M1, . . ., Mn.

(2) dj represents the due date of job Jj.
(3) tj represents the initial processing time of job Jj.
(4) rj represents the release time of job Jj.

The existence of operations on the same job, on different parts
and components, processed simultaneously on different machines,
followed by components assembly operations (multi-level jobs).

Furthermore EJSSP should meet the following restricted condi-
tions:

(a) The existence of different job release dates rj and due dates dj.

(b) The possibility of job priorities definition, reflecting the impor-
tance of satisfying their due dates, being similar to the weight
assigned to jobs in scheduling theory.

(c) Precedence constraints among operations of the different jobs.
(d) New jobs can arrive at unpredictable intervals. Jobs can be can-

celled. Changes in task attributes can occur: processing times,
due dates release dates and priorities.

(e) Each operation Oijkl must be processed on one machine of the
set Mi, where pijkl is the processing time of operation Oijkl on
machine Mi.

(f) A machine can process more than one operation of the same
job (recirculation).

(g) The existence of alternative machines, identical or not.

The methods for the resolution of NP-hard combinatorial opti-
mization problems, where Scheduling is included, can be divided
in exact and approximation algorithms [4,13]. In the first, an
exhaustive solutions space search is made and the optimal solution
obtaining is ensured. The second type of algorithms has the objec-
tive to find a good solution in an acceptable period of time, but do
not guarantee the optimal solution. MH are a more representative
class of approximation algorithms, used in this work.

2. Literature review

This section will discuss some efforts related to literature on
applications of different paradigms to the Dynamic Scheduling
problem resolution, such as AC, MH, MAS, and CBR.

2.1. Autonomic Computing applications for Scheduling

Autonomic Computing (AC) is an IBM Grand Challenge proposed
in 2001 by Paul Horn, Senior Vice-President of IBM Research [1].
Horn argues that the Information Technology (IT) industry is on
constant expansion and will soon reach its breaking point. This
can happen because massive data centers are built in organic, ad
hoc ways, resulting in a heterogeneous composition where main-
tenance costs in terms of qualified staff, time and capital can soon
exceed corporate capabilities [2].

AC represents a new computation paradigm in which IT systems
have managing mechanisms embedded in the application, with the
objective to automate the management. So, applications must be
able to adapt, accommodate and protect themselves to the changes
in the environment and in the objectives.

AC proposes a broad new field of research related to the
automation of IT management processes, drawing inspiration from
the human autonomous nervous system, since many essential
functions to the welfare and regulation of living beings are not
consciously triggered, e.g., heart beating, digestive system, etc.
However, without an autonomous system to manage these mech-
anisms, the body would stop working or the concentration in other
life aspects would not be possible.

From its inception, the AC concept involves four properties, gen-
erally referred as self-* properties, in which research efforts may be
categorized [2,17]:

• Self-configuration deals with installation, configuration and
integration of IT systems. When a new component is intended
to insert the system, it is autonomously incorporated, like a
new cell incorporates the human body, or even when a per-
son incorporates a population. The installation procedures work
by gathering information about the environment, figuring out
the dependencies among needed tasks and also optimizing per-
formance measures, and finally executing the tasks to perform
changes.

Download English Version:

https://daneshyari.com/en/article/496287

Download Persian Version:

https://daneshyari.com/article/496287

Daneshyari.com

https://daneshyari.com/en/article/496287
https://daneshyari.com/article/496287
https://daneshyari.com

