Swarm and Evolutionary Computation 32 (2017) 1-24

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Survey Paper

Review of Differential Evolution population size

@ CrossMark

Adam P. Piotrowski

Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland

ARTICLE INFO ABSTRACT

Article history:

Received 2 June 2015
Received in revised form

29 January 2016

Accepted 31 May 2016
Available online 4 June 2016

Keywords:

Differential Evolution
Population size

Adaptive control parameters
Evolutionary Algorithms
Metaheuristics

Population size of Differential Evolution (DE) algorithms is often specified by user and remains fixed
during run. During the first decade since the introduction of DE the opinion that its population size
should be related to the problem dimensionality prevailed, later the approaches to DE population size
setting diversified. In large number of recently introduced DE algorithms the population size is con-
sidered to be problem-independent and often fixed to 100 or 50 individuals, but alongside a number of
DE variants with flexible population size have been proposed.

The present paper briefly reviews the opinions regarding DE population size setting and verifies the
impact of the population size on the performance of DE algorithms. Ten DE algorithms with fixed po-
pulation size, each with at least five different population size settings, and four DE algorithms with
flexible population size are tested on CEC2005 benchmarks and CEC2011 real-world problems. It is found
that the inappropriate choice of the population size may severely hamper the performance of each DE
algorithm. Although the best choice of the population size depends on the specific algorithm, number of
allowed function calls and problem to be solved, some rough guidelines may be sketched. When the
maximum number of function calls is set to classical values, i.e. those specified for CEC2005 and CEC2011
competitions, for low-dimensional problems (with dimensionality below 30) the population size equal to
100 individuals is suggested; population sizes smaller than 50 are rarely advised. For higher-dimensional
artificial problems the population size should often depend on the problem dimensionality d and be set
to 3d-5d. Unfortunately, setting proper population size for higher-dimensional real-world problems
(d > 40) turns out too problem and algorithm-dependent to give any general guide; 200 individuals may
be a first guess, but many DE approaches would need a much different choice, ranging from 50 to 10d.
However, quite clear relation between the population size and the convergence speed has been found,
showing that the fewer function calls are available, the lower population sizes perform better.

Based on the extensive experimental results the use of adaptive population size is highly re-
commended, especially for higher-dimensional and real-world problems. However, which specific al-
gorithms with population size adaptation perform better depends on the number of function calls al-
lowed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

population-based Evolutionary Algorithms (EA) PS attracted large
attention both in empirical and theoretical studies

Among three main control parameters of Differential Evolution
(DE) [128] optimization algorithms the significance of scale factor
(F) and crossover rate (CR) has already been deeply researched —
see the review in [31,99]. In many recently introduced DE algo-
rithms the values of F and CR do not need to be specified by the
user, but are adapted or self-adapted during run
[12,48,66,75,81,82,92,118,124,171]. The impact of the third control
parameter, population size (PS), on the performance of DE algo-
rithms has been rarely studied so far, and to motivate the choice of
PS in many papers the reader is referred to [50], an interesting but
old and very brief study. This may be surprising, as in case of other

E-mail address: adampp@igf.edu.pl

http://dx.doi.org/10.1016/j.swev0.2016.05.003
2210-6502/© 2016 Elsevier B.V. All rights reserved.

[2,22,39,40,58,76,84,88,93]. In the overwhelming majority of DE
algorithms (as well as other EAs [41]) PS needs to be pre-specified
and is kept fixed during run [31]. Researchers that propose novel
DE methods suggest setting PS to very different values (differences
exceed an order of magnitude — see [31,98,121]), but in a few
studies [3,28,47,61,96,119,138,148] these choices are backed by the
analysis of the impact of PS on the performance of the proposed
algorithm. Although in recent years a number of DE algorithms
with variable PS have been proposed [14-
16,43,51,107,131,134,136,145,149,173,175], surprisingly such ap-
proaches have never been compared with each other (even more
recently introduced DE algorithms with flexible PS are not com-
pared with their older counterparts in the source papers) and their
superiority over DE algorithms with fixed population size has not


www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://dx.doi.org/10.1016/j.swevo.2016.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.05.003&domain=pdf
mailto:adampp@igf.edu.pl
http://dx.doi.org/10.1016/j.swevo.2016.05.003

2 A.P. Piotrowski / Swarm and Evolutionary Computation 32 (2017) 1-24

been verified. In fact, answers to the questions like 1. “how im-
portant is PS for the performance of DE algorithms”, 2. “how large
PS should be”, 3. “should PS depend on the dimensionality of the
problem to be solved”, 4. “should PS be fixed or modified during
run”, 5. “what concepts the population size adaptation should
follow” and 6. “how to relate PS with the number of allowed
function calls” may today be only intuitive, due to the lack of de-
tailed study on this topic. As the reader may expect, the above
questions are addressed in the present paper.

To verify the impact of the population size on the performance
of DE optimizers, and to find some rules how to choose DE po-
pulation size, in this study 10 various DE algorithms are tested
with 5-10 different but fixed population sizes on 2- to 50-di-
mensional CEC2005 benchmarks [130] and 1- to 216-dimensional
CEC2011 real-world problems [30]. To understand and verify the
efficiency of this few population size adaptation schemes that have
so far been proposed, 7 variants of 4 DE algorithms with variable
population size are tested on the same problems.

The scope of the study is limited to DE approaches developed
for low- to moderately high-dimensional single-objective non-
dynamic optimization problems. Due to the length of the manu-
script, the main criterion for comparison of algorithms and their
population sizes is the best objective function value found within
the maximum number of function calls that has been defined for
CEC2005 and CEC2011 problems in source publications [30,130].
However, in many practical applications convergence speed is an
important factor; to get this into account the comparison of the
results obtained after two much smaller numbers of function calls
is also considered in this study.

2. Differential Evolution

The first population-based DE optimization method has been
introduced in [128,129]. Although there are plenty of DE algo-
rithms today [31], most of them follows basically the similar
scheme. After initial random generation from the uniform dis-
tribution, in every generation g individuals
Xig = {xgg, ,xfg } i=1,..,PS are evolved in order to find the
vector X' such that
fx*)= min df(X)

xeQcR

M

when f: R? - R. The search is often restricted within the subset
]'[‘j:1 [LJ, UJ]. The non-classical “d” notation, instead of “D”, is used in
this study to facilitate noting visually the difference between “100”
and “10d” that will frequently be used through the paper.

In each generation DE performs three steps called mutation,
crossover and selection. Each individual, or parent (X;g) creates
first so-called donor vector (vig) by means of some mutation
strategy. Plenty mutation schemes has been proposed so far
[6,18,46,62,64,75,78,117,151,153], for example

DE/rand/1

Vig = Xr1g + F(Xr2g — Xr3,8) 2)
DE/best/2

Vig = Xpestg + F-(Xr1,g — Xr2,g) + F-(Xi3.g — Xrag) 3

DE/current-to-pbest/1
Vig = Xjg + F-(X,‘,’es['g - xi,g) + F‘(xrl,g - xr2,g) 4)

In above equations F is the control parameter called scaling
factor, r1, r2, r3, and r4 are randomly selected integers from the
range [1,PS], such that r1 # 12 # 13 # 14 # i, Xpest 1S the best in-
dividual in the current population and Xfesg is a randomly

selected individual from the top p% best individuals of the current
population.

After mutation a crossover between donor (vig) and parent
(Xig) vector is performed to generate an offspring (or trial vector)
(uig). Although there are few crossover schemes (see the detailed
discussion in [5,63,86,148,159,167,172]), in the vast majority of DE
algorithms a binomial crossover is used

y vl, if rand/0, 1) <CR o j = jrgnq;
b x{/, otherwise 5)
where the value of the control parameter CR should be set within
[0,1] interval, rand,.j (0, 1) means a random number generated
within [0,1] interval from the uniform distribution and jgnq; is a
randomly selected integer from [1,d] range. At this point often
some constraints or bounds handling approaches are applied.

After crossover the objective function is evaluated for u;g, and
according to the greedy selection only the better of the offspring-
parent pair is passed to the next generation

!ui,g if f(ug) <fXig)

Xig1 | Xig otherwise 6)

DE continues the search until the stopping criteria are met
(that are frequently defined by setting the maximum number of
function calls).

Many ideas how to improve DE algorithms have been proposed
- they are not discussed here, for a review the reader is referred to
[31,99]. However, some of DE modifications led to approaches that
do not strictly follow the “classical” scheme given above. For ex-
ample, distributed DE algorithms [1,7,32,109,110,155] divide the
total DE population into sub-populations that may behave differ-
ently, and set the rules of communication, or migration of in-
dividuals, between them. Memetic DE methods combine DE
paradigm with some local search procedures to speed up ex-
ploitation without loosing the global search capabilities
[20,77,97,100,111]. DE has also been hybridized with many other
heuristic algorithms [1,11,25,57,59,81,85,137,164,174], and was
implemented as a part of multialgorithms [106,132,142-144]. As
such approaches often do not follow DE scheme discussed above,
the impact of the population size on their performance may de-
pend on many specific features. Such “non-classical” DE concepts
are not researched in this study.

3. Population size in Differential Evolution

Population size of DE must be set larger than the number of
different randomly selected integers in the chosen mutation op-
eration, otherwise difference vectors could not be constructed
(consult Egs. (2)—~(4)). To understand the importance of the po-
pulation size, some insight into the behavior of DE algorithms is
needed. According to [49,155] DE does not require maintaining
high population diversity during the whole search, although this
opinion is not always acknowledged [165]. As in DE the step size
depends mainly on the magnitude of difference vectors, and hence
on the distance between individuals in the search space, DE di-
versity should decrease during run to allow ultimate convergence
to some local optima. The dependence of DE on magnitude of
difference vectors is frequently considered a main advantage of DE
by practitioners, but on the other hand it does not allow proving
the convergence of classical DE with probability 1 without adding
some extra terms [71,72]. The scheme of DE behavior may be
summarized as follows [49,95,155]. Initially individuals are ran-
domly generated in the search space, hence distances between



Download English Version:

https://daneshyari.com/en/article/4962878

Download Persian Version:

https://daneshyari.com/article/4962878

Daneshyari.com


https://daneshyari.com/en/article/4962878
https://daneshyari.com/article/4962878
https://daneshyari.com

