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a  b  s  t  r  a  c  t

We  propose  a  neural  network  architecture  based  on  the oblique  elliptical  basis  function  for  supervised
learning  problems.  In classification,  a category  can  be  a disconnected  or  non-convex  region  involving  sev-
eral  overlapping  or disjoint  sub-regions  of  the  feature  space.  Other  existing  supervised  learning  methods
may have  the  restriction  that  only  allows  decision  regions  to  be convex.  Our  proposed  method  over-
comes  this  restriction  by employing  a rotational  self-constructing  clustering  algorithm  to decompose
the  feature  space  into  a collection  of  sub-regions  which  can  then  be  combined  to  make  up individual
categories.  An  unseen  instance  is  classified  to a certain  category  if its similarity  to the  category  exceeds
a  threshold.  The  whole  framework  fits  in a five-layer  network  consisting  of  input,  component-similarity,
cluster-similarity,  aggregation,  and  output  layers.  A  similar  idea  also applies  to solving  regression  prob-
lems.  A parameter  learning  algorithm  based  on least  squares  estimation  is  used  to  derive  the  weights  of
the  underlying  network.  Our  approach  can  offer  some  advantages  in practicality.  Through  the  incorpora-
tion  of rotation,  data  can  be clustered  more  appropriately  than  by standard  elliptical  basis  functions.  Also,
our  approach  is  applicable  to  single-label  classification,  multi-label  classification,  as  well as regression
problems.  A  number  of  experiments  are  conducted  to show  the effectiveness  of  the  proposed  approach.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Supervised learning, including classification and regression,
plays an important role in many fields [1–9]. Two kinds of clas-
sification tasks are encountered. One is single-label classification
in which each instance belongs to only one category. The other
one is multi-label classification in which an instance is allowed
to belong to more than one category. For regression, one is usu-
ally interested in estimating the numerical relationship between a
dependent variable and one or more independent variables.

1.1. Single-label classification

Many methods, based on machine learning techniques such as k-
nearest neighbors (KNN) [10], multilayered perceptrons (MLP) [11],
and radial basis function (RBF) neural networks [12], have been
proposed for single-label classification. KNN is a type of lazy learn-
ing. For an unseen pattern, its k nearest neighbors in the feature
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space are found. The unseen pattern is classified by being assigned
to the most common class among these k nearest neighbors. KNN
is simple, but no training is done and all computation is deferred
until classification. A MLP  is a feedforward artificial neural net-
work model consisting of multiple layers of nodes, with each layer
fully connected to the next one. Each node in the hidden layers is a
neuron with a nonlinear activation function. MLP  usually utilizes a
supervised learning technique, called backpropagation, for training
the network. A RBF network uses radial basis functions as activa-
tion functions. The output of the network is a linear combination of
the outputs from radial basis functions. In [13], basis functions are
interpreted as probability density functions. The weights are seen
as prior probabilities. Models that output class conditional densities
or mixture densities are proposed. A training algorithm based on
the expectation-maximization (EM) algorithm [14], is developed.
A hybrid training of this type of RBF networks is addressed in [15].
Some extensions of RBF neural networks, e.g., elliptical basis func-
tion (EBF) [16,17] and versatile EBF (VEBF) [18] neural networks,
have also been proposed. Fast training algorithms are used to learn
a data set in only one pass. The network structure is flexible and can
be adjusted during the training process. However, the Euclidean or
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Mahalanobis distance is used, and the learning of output weights
is not taken into consideration.

1.2. Multi-label classification

To deal with multi-label text classification, two approaches are
mainly adopted [19,20]. One approach transforms a multi-label
classification task into several single-label classification tasks to
which single-label classification methods can be applied [21,22].
The other extends the capability of a specific single-label classifi-
cation algorithm to handle multi-label data directly. One popular
problem transformation method, called binary relevance, was pro-
posed in [21]. The method transforms the original dataset into p
datasets, where p is the number of categories associated with the
original dataset. Each resulting dataset contains all instances of
the original dataset with only two labels, “belonging to” or “not
belonging to” a particular category. Since the resulting datasets
are single-labeled, all single-label classification techniques are
applicable to them. Several neural-network approaches adap-
tively designed for multi-label classification have been proposed
[27,19,24–26,23]. A kernel method proposed for multi-label clas-
sification is proposed in [21]. The back-propagation multi-label
learning (BP-MLL) [28] algorithm is a multi-label version of the
back-propagation neural network. To take care of multi-labels,
label co-occurrence is incorporated into the pairwise ranking loss
function. However, it has a complex global error function to be
minimized. The multi-label k-nearest neighbors (ML-KNN) [29] is
a lazy learning algorithm which requires a big run-time search.
ML-RBF [30] is a multi-label RBF neural network which is an
extension of the traditional RBF learning algorithm. Multi-label
with fuzzy relevance clustering (ML-FRC) [31] is a fuzzy rele-
vance clustering based method for multi-label text categorization.
Nam et al. [32] report that binary cross entropy can outperform
the pairwise ranking loss by leveraging rectified linear units for
nonlinearity. Kurata et al. [33] propose a neural network initial-
ization method to treat some of the neurons in the final hidden
layer as dedicated neurons for each pattern of label co-occurrence.
These dedicated neurons are initialized to connect to the cor-
responding co-occurring labels with stronger weights than to
others.

1.3. Regression

Various approaches based on KNN, MLP, and RBF neural net-
works have been proposed for regression problems [10–12]. The
KNN regression method is a nonparametric method which bases its
prediction on the k nearest neighbors of the target to be forecasted.
However, it lacks the capability of adaptation and the testing time is
long. For the MLP  and RBF networks used in regression, the outputs
are numerical values instead of categories. Network parameters are
learned from the training data. However, determining the num-
ber of hidden nodes is a challenging issue. Fuzzy theory has been
incorporated for prediction [34]. However, membership functions
need to be determined which is often a challenging task. Also, no
learning is offered by fuzzy theory. A neuro-fuzzy scheme which
combines the fuzzy theory and a hybrid learning method is pro-
posed for regression problems [35]. A set of fuzzy IF-THEN rules is
extracted from the training examples. Then a fuzzy neural network
is constructed accordingly and parameters are refined to increase
the precision of the fuzzy rule-base. Extreme learning machines
(ELMs) [36,37] have also been proposed to deal with regression
problems. ELM is a single-hidden layer feedforward network. The
input weights connecting the input layer to the hidden layer, as
well as the biases of the hidden neurons, are assigned to random
values and no training is done for them. The output weights, con-

necting the hidden layer and the output layer, are determined by
learning from training patterns.

1.4. Paper overview

In this paper, we  present a neural network architecture based on
the oblique elliptical basis function for classification and regression
problems. In classification, a category can involve several overlap-
ping or disjoint sub-regions. We  decompose the feature space into
a collection of sub-regions which can then be combined to make
up individual categories. An unseen instance is classified to a cer-
tain category if its similarity to the category exceeds a threshold.
The whole framework fits in a five-layer network consisting of
input, component-similarity, cluster-similarity, aggregation, and
output layers. A similar idea also applies to solving regression
problems. Three steps are proposed for training such networks
in the training phase: network initialization, parameter learning,
and output activation. Firstly, a group of clusters is located for
the given training data by a rotational self-constructing cluster-
ing algorithm. Secondly, a parameter learning algorithm based on
least squares estimation is used to set the weights of the network.
Finally, transfer functions are applied to derive the output response
of the network. Other existing supervised learning methods may
have the restriction that only allows decision regions to be convex.
For instance, the decision regions KNN [10] provides are convex. For
a given input, the decision region can be regarded as the surround-
ing convex space containing its k nearest neighbors. The perceptron
algorithm [38,39] is another example where the decision boundary
separates the decision regions which are convex. Support vector
machines (SVM) [40,41] are yet another example. In a SVM model,
a hyperplane is derived to divide the space into two convex decision
regions. We  have added these comments in this revision. However,
our proposed method allows the decision region associated with
an output node to be disconnected or non-convex.

This work differs from [35,31] in that the clustering algorithm
allows the given data to be grouped into clusters expressed in the
form of oblique elliptical basis functions. In [35,31], standard ellip-
tical basis functions are used. No rotations are applied to the basis
function and its axes are parallel to the coordinates. In this work,
rotations are allowed and the axes may  not be parallel to the coor-
dinates. As a result, data can be clustered more appropriately by
oblique elliptical basis functions than by standard elliptical basis
functions. Consider a simple example in Fig. 1(a) containing 9 two-
dimensional data points. A cluster with standard elliptical basis
function embracing these points is shown by the dotted curve in
Fig. 1(b), while a cluster with oblique elliptical basis function for
the points is shown in Fig. 1(c).

The cluster of Fig. 1(c) is more fit to the 9 data points than the
cluster of Fig. 1(b), covering less extraneous space. Moreover, the
work in [35,31] can only apply to either regression or classification
problems, while the approach proposed in this paper is applicable
to single-label classification, multi-label classification, as well as
regression problems.

The rest of this paper is organized as follows. The use of neural
networks for supervised learning is addressed in Section 2. Our pro-
posed neural network approach is described in Section 3. A simple
example for illustration is given in Section 4. Experimental results
are presented in Section 5. Finally, concluding remarks are given in
Section 6.

2. Supervised learning with neural networks

Let X = {(x(i), y(i))|1 ≤ i ≤ N} be a finite set of N training instances,
where x(i) ∈ R

s is an input vector with s features, i.e., x(i) =
〈x(i)

1 , x(i)
2 , . . .,  x(i)

s 〉T , and y(i) is the corresponding target vector with
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