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This study proposes a multi-objective optimization model of two cascade reservoirs in the Upper Yel-
low River basin for increasing social well-beings in general while simultaneously mitigating ice/flood
threats. We first develop a strategy of dimensionality reduction and constraint transformation to largely
diminish the complexity of the optimization system and next propose a novel search method that fuses a
Feasible Search Space (FSS) into the Particle Swarm Optimization (PSO) algorithm, i.e. FSS-PSO, to effec-
tively solve the optimization problem. To investigate the applicability and effectiveness of the proposed
method, this study compares the FSS-PSO model with historical operation. The results indicate that the
proposed model produces much better performances in all the objectives than historical operation. To
assess the superiority and efficiency of the proposed FSS-PSO, the classical PSO and the Chaos Particle
Swarm Optimization (CPSO) are also implemented to compare their computation time and convergence
rates. The results demonstrate that the FSS-PSO improves the efficiency of the PSO and the CPSO by 72%
and 55% accordingly and the convergence rate of the FSS-PSO is the fastest among the three algorithms.
The results suggest that the proposed dimensionality-reduction strategy coupled with the FSS-PSO algo-
rithmis a promising tool for water resources management under multi-objective joint reservoir operation
and the proposed method could be easily implemented in the context of multi-objective optimization.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The Yellow River is “China’s Mother River” because its basin
is the cradle of the Chinese civilization. The complex topography,
fragile environment and prominent contradiction in various sec-
tors make a considerable increase in flood and ice disasters over
its upper basin, which threatens lives and property in downstream
areas. As known, the Yellow River is famous for its sedimentation
problems, where the suspended sediment has formed a secondary
suspended river [25,28,32]. Reservoirs are the most effective water
storage facilities in alleviating the uneven spatio-temporal dis-
tribution of water resources. As known, the purposes of most
reservoirs built along the River in the past decades were only to
generate hydropower in response to socio-economic development
needs. With the rapid increase in water demand driven by pop-
ulation growth coupled with socio-economic development, the
imbalances in water supply and demand, the tasks of flood and ice
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control and other factors have caused a dramatic change in the pur-
poses of reservoir operation. Nonetheless, re-allocating the limited
water resources of multi-purposed reservoirs is a great challenge,
if not impossible.

System analysis is a very useful tool for assessing the impacts
of policies and managing complex systems. Many engineering
problems involve multiple competing objectives and prospective
solutions. In the last decades, various classical nonlinear opti-
mization methods have been used with effective and competent
performance when tackling these problems. However, they usu-
ally require gradient information about the objective functions and
constraints, which, in general, are difficult to solve and would eas-
ily fall into local optimal solutions. Recently, several meta-heuristic
approaches, such as evolutionary algorithms (EA) [10,44], har-
mony search (HS) [18], biogeography-based optimization (BBO)
[5] and particle swarm optimization (PSO) [42,45], have been
proposed and utilized in order to handle diverse optimization
tasks [4,17,19,30,31]. While these meta-heuristic methods pro-
duce better performances over classical optimization approachesin
complex multi-objective problems, they are plagued by their own
limitations such as premature convergence to a local optimal solu-
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tion rather than a global on [35]. As known, in high dimensional
problems, only a small percentage of solutions can converge to the
entire Pareto optimal front, termed as the “curse of dimensionality”
[16]. Deb and Saxena [14] indicated that the ability to fully explore
surfaces in greater than five dimensions was highly limited. Conse-
quently, more research efforts must be developed in this direction
if many-objective problems are to be solved.

Various meta-heuristic approaches have revealed superior
performance in dealing with complex hydrological operation
systems [3,8,11,20,23,24,34,39]. Lately, swarm intelligence algo-
rithms have become popular in solving reservoir planning and
management problems, for example, the genetic algorithm (GA)
[9,12,22,27,36,37]; artificial neural network (ANN) [6,13]; ant
colony optimization (ACO) [1]; and the PSO [2,7,21,26,36]. Even
through efficient swarm intelligence algorithms satisfactorily
applied to many optimization problems, the PSO algorithm, how-
ever, has its own flaws, e.g. early maturity, slow convergence rates,
or difficult to handle constraint optimization problems. For this
reason, a number of studies have been proposed to improve the effi-
ciency and/or effectiveness of the PSO algorithm through adjusting
its code mode, inertia weight, maximum speed limit of particles,
mutation operators, neighborhood operations, boundary condi-
tions [15,29,33,44]. Some of the studies used hybrid (mixture and
parallel) algorithms, for instance PSO with immune algorithms,
simulated annealing algorithms and chaos algorithms, to improve
search effectiveness [38,40,41].

In this study we aim to find a suitable water and sedi-
ment regulation strategy for multi-objective reservoir operation
through searching a set of optimal solutions for two pivotal cas-
cade reservoirs in the Upper Yellow River basin. We propose
a dimensionality-reduction and constraint transformation proce-
dure coupled with a novel search strategy that fuses a Feasible
Search Space (FSS) into the PSO algorithm, i.e. an improved PSO
algorithm (FSS-PSO), to effectively search optimal solutions. Our
research findings would suggest optimal operation strategies for
water and sediment conservation and provide the referential
impacts of water allocation on sediment control. The rest of the
present article is structured as follows: Section 2 is dedicated to
the mathematical representation of cascade reservoirs with the
explanation of the implementation procedure of the proposed FSS-
PSO algorithm; Section 3 explains the study watershed and model
construction; Section 4 presents and discusses the experimental
results, comparison and evaluation of the performance of the inves-
tigative methods. Finally, the conclusion of the implementation of
the proposed method is presented in the last Section.

2. Methods

Water resources management often involves very large scale
measures, complex processes and regulations. It is a great
challenge to make efficient water resources management that
optimizes a real-practical system under the great uncertainty of
hydro-meteorological conditions. We propose a multi-objective
optimization model for the joint operation of two cascade reser-
voirs in the Upper Yellow River basin for decision makers to
increase social well-beings while simultaneously mitigate ice/flood
threats. We first derive a mathematical model that considers four
objectives: water and sediment regulation; ice and flood control;
power generation; and water supply, and then provide a clear
perspective of all the consideration and physical constraints con-
ditions. To solve the complex problem, a dimensionality-reduction
and constraint transformation procedure is proposed while a novel
and effective search method, i.e. FSS-PSO, is developed and eval-
uated. The core idea of the FSS-PSO is to intelligently handle the
objectives and constraints through intelligibly refining the feasi-

ble search space. To assess the proposed FSS-PSO, the classical PSO
and the chaos particle swarm optimization (CPSO) are also imple-
mented to compare the computation time and convergence rates of
the three algorithms. The research flowchart of this study is illus-
trated in Fig. 1. A detailed description of the methods adopted in
this study is shown as follows.

2.1. Building a multi-objective model and its transformation

The multi-objective optimization problem can generally be
expressed as follows.

Minimize/MaximizeF(X) = [F1(X),F2(X), ..,Fi(X)] (M
subjecttoG;(X) < 0,i= 1,2, ..,m.

H](X) = 07.’: 1,2, D,

where F(X) is a vector of objective functions; G; (X) and H; (X)
are constraints; k is the number of objective functions; m is the
number of inequality constraints; and p is the number of equality
constraints. X is a vector of decision variables.

A common solution for multi-objective optimization problems
is to determine a Pareto optimal set. However, the difficulty in find-
ing a representative Pareto front set would arise significantly as the
dimension increases. To solve the problem, we propose to reduce
the number of objectives and to identify any constraint that actu-
ally restrains the FSS for the stated objectives. The mathematical
expression of objectives and constraints of an optimization model
can be generally classified into two types: equality and inequality.
The inequality objectives must be strictly satisfied in the search pro-
cess, and thus they could be transformed into strong constraints. As
a result, the number of objectives of the multi-objective optimiza-
tion model could be reduced, which would decrease the dimension
as well as the difficulty in searching the optimal solution.

The controllable variables for reservoir operation can be clas-
sified into three categories: discharge; water level; and power
generation. We, thus, classify the constraints into the three cate-
gories based on their features. These constraints are further divided
into two types: transformable constraint; and non-transformable
constraint. Transformable constraints can be directly converted
into decision variables while non-transformable constraints are,
in general, the implicit functions of optimization variables, which
cannot be converted into decision variables. The category of con-
trollable variables and the classification of constraints are listed in
Table 1.

2.2. Refining feasible search space (FSS)

In this study, the non-transformable constraints (i.e. power gen-
eration output) can be decomposed into E; and E,, in which E;
is a composite function addressing the composition of relations
between water head and generated flow while E;, is a composite
function in relation to the power generation output of different
power generating units. The targets of E; and E, are to make the
maximum generation benefit in a dispatch period. The concept of
refining the FSS is presented in Fig. 2, and the relevant process is
addressed as follows.

2.2.1. Process description

First of all, the whole dispatch period (0, T) is equally divided
into T intervals. In our case, the whole dispatch period is one year
and the intervals are of a monthly scale. The FSS can then be refined
(filtered) sequentially by cross-examining the objectives and trans-
formable constraints in the pairs of consecutive sub-periods. The
process of refining the FSS of the whole dispatch period begins with
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