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a  b  s  t  r  a  c  t

Human  recognition  of the  actions  of other  humans  is  very  efficient  and  is based  on  patterns  of  move-
ments.  Our  theoretical  starting  point  is  that  the dynamics  of the  joint  movements  is important  to  action
categorization.  On  the  basis  of  this  theory,  we  present  a  novel  action  recognition  system  that  employs  a
hierarchy  of Self-Organizing  Maps  together  with  a custom  supervised  neural  network  that  learns  to  cate-
gorize  actions.  The  system  preprocesses  the  input  from  a Kinect  like 3D  camera  to  exploit  the  information
not  only  about  joint  positions,  but also  their  first and  second  order  dynamics.  We  evaluate  our  system
in  two  experiments  with  publicly  available  datasets,  and  compare  its  performance  to  the  performance
with  less  sophisticated  preprocessing  of the  input.  The  results  show  that  including  the dynamics  of the
actions  improves  the  performance.  We  also  apply  an  attention  mechanism  that  focuses  on  the  parts  of
the  body  that  are  the  most  involved  in  performing  the actions.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The success of human–robot interaction depends on the devel-
opment of robust methods that enable robots to recognize and
predict goals and intentions of other agents. Humans do this, to
a large extent, by interpreting and categorizing the actions they
perceive. Hence, it is central to develop methods for action catego-
rization that can be employed in robotic systems. This involves an
analysis of on-going events from visual data captured by cameras
to track movements of humans and to use this analysis to identify
actions. One crucial question is to know what kind of informa-
tion should be extracted from observations for an artificial action
recognition system.

Our ambition is to develop an action categorization method that,
at large, works like the human system. We  present a theory of
action categorization due to Gärdenfors and Warglien [9] (see also
[7,8]) that builds on Gärdenfor’s [6] theory of conceptual spaces.
The central idea is that actions are represented by the underlying
force patterns. Such patterns can be derived from the second order
dynamics of the input data. We  present experimental data on how
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humans categorize action that supports the model. A goal of this
article is to show that if the dynamics of actions is considered, the
performance of our Self-Organizing Maps (SOMs) [20] based action
recognition system can be improved when categorizing actions
based on 3D camera input.

The architecture of our action recognition system is composed
of a hierarchy of three neural network layers. These layers have
been implemented in different versions. The first layer consists of
a SOM, which is used to represent preprocessed input frames (e.g.
posture frames) from input sequences and to extract their motion
patterns. This means that the SOM reduces the data dimensionality
of the input and the actions in this layer are represented as activity
patterns over time.

The second layer of the architecture consists of a second SOM.
It receives the superimposed activities in the first layer for com-
plete actions. The superimposition of all the activity in the first layer
SOM provides a mechanism that makes the system time invariant.
This is because similar movements carried out at different speed
elicit similar sequences of activity in the first layer SOM. Thus the
second layer SOM represents and clusters complete actions. The
third layer consists of a custom made supervised neural network
that labels the different clusters in the second layer SOM with the
corresponding action.

We have previously studied the ability of SOMs to learn dis-
criminable representations of actions [2], and we have developed a
hierarchical SOM based action recognition architecture. This archi-
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tecture has previously been tested using video input from human
actions in a study that also included a behavioural comparison
between the architecture and humans [3], and using extracted joint
positions from a Kinect like 3D camera as input with good results
[12].

This article presents results that suggest that the performance of
our action recognition architecture can be improved by exploiting
not only the joint positions extracted from a Kinect like 3D camera,
but also simultaneously the information present in their first and
second order dynamics.

Apart from analysing the dynamics of the data, we implement
an attention mechanism that is inspired by how human attention
works. We  model attention by reducing the input data to those
parts of the body that contribute the most in performing the var-
ious actions. Adding such an attention mechanism improves the
performance of the system.

The rest of the paper is organized as follows: First we  present
the theoretical background from cognitive science in Section 2. The
action recognition architecture is described in detail in Section 3.
Section 4 presents two experiments to evaluate the performance of
the architecture employing new kinds of preprocessing to enable
additional dynamic information as additional input. Section 5 con-
cludes the paper.

2. Theoretical background

When investigating action recognition in the context of
human–robot interaction, it should first be mentioned that human
languages contain two types of verbs describing actions [22,40].
The first type is manner verbs that describe how an action is per-
formed. In English, some examples are ‘run’, ‘swipe’, ‘wave’, ‘push’,
and ‘punch’. The second type is result verbs that describe the result
of actions. In English, some examples are ‘move’, ‘heat’, ‘clean’,
‘enter’, and ‘reach’.

In the context of robotics, research has focused on how result
verbs can be modelled (e.g. [4,19,21,5]). However, when it comes
to human–robot interaction, the robot should also be able to recog-
nize human actions by the manner they are performed. This is often
called recognition of biological motion [16]. Recognizing manner
action is important in particular if the robot is supposed to model
the intentions of a human. In the literature, there are some sys-
tems for categorizing human actions described by manner verbs,
e.g. [15,14]. However, these systems have not been developed with
the aim of supporting human–robot interaction. Our aim in this
article is to present a system that recognizes a set of manner actions.
Our future aim is, however, to integrate this with a system for rec-
ognizing results verbs that can be used in linguistic interactions
between a human and an robot (see [4,27] for examples of such
linguistic systems).

Results from the cognitive sciences indicate that the human
brain performs a substantial information reduction when catego-
rizing human manner actions. Johansson [18] has shown that the
kinematics of a movement contain sufficient information to iden-
tify the underlying dynamic patterns. He attached light bulbs to
the joints of actors who were dressed in black and moved in a black
room. The actors were filmed performing actions such as walking,
running, and dancing. Watching the films – in which only the dots of
light could be seen – subjects recognized the actions within tenths
of a second. Further experiments by Runesson and Frykholm [31],
see also [30], show that subjects extract subtle details of the actions
performed, such as the gender of the person walking or the weight
of objects lifted (where the objects themselves cannot be seen).

One lesson to learn from the experiments by Johansson and his
followers is that the kinematics of a movement contains sufficient
information to identify the underlying dynamic force patterns.

Runesson [30] claims that people can directly perceive the forces
that control different kinds of motion. He formulates the following
thesis:

Kinematic specification of dynamics: The kinematics of a move-
ment contains sufficient information to identify the underlying
dynamic force patterns.

From this perspective, the information that the senses – primar-
ily vision – receive about the movements of an object or individual
is sufficient for the brain to extract, with great precision, the under-
lying forces. Furthermore, the process is automatic: one cannot help
but perceiving the forces.

Given these results from perceptual psychology, the central
problem for human–robot interaction now becomes how to con-
struct a model of action recognition that can be implemented in
a robotic system. One idea for such a model comes from [26,33],
who extend Marr and Nishihara’s [25] cylinder models of objects
to an analysis of actions. In Marr’s and Vaina’s model, an action
is described via differential equations for movements of the body
parts of, for example, a walking human. What we  find useful in this
model is that a cylinder figure can be described as a vector with a
limited number of dimensions. Each cylinder can be described by
two dimensions: length and radius. Each joining point in the figure
can be described by a small number of coordinates for point of con-
tact and angle of joining cylinder. This means that, at a particular
moment, the entire figure can be written as a (hierarchical) vector
of a fairly small number of dimensions. An action then consists of a
sequence of such vectors. In this way, the model involves a consid-
erable reduction of dimensionality in comparison to the original
visual data. Further reduction of dimensionality is achieved in a
skeleton model.

It is clear that, using Newtonian mechanics, one can derive the
differential equations from the forces applied to the legs, arms, and
other moving parts of the body. For example, the pattern of forces
involved in the movements of a person running is different from the
pattern of forces of a person walking; likewise, the pattern of forces
for saluting is different from the pattern of forces for throwing [34].

The human cognitive apparatus is not exactly evolved for New-
tonian mechanics. Nevertheless, Gärdenfors [7] (see also [40,8])
proposed that the brain extracts the forces that lie behind different
kinds of movements and other actions:

Representation of actions: An action is represented by the pattern
of forces that generates it.

We speak of a pattern of forces since, for bodily motions, several
body parts are involved; and thus, several force vectors are inter-
acting (by analogy with Marr’s and Vaina’s differential equations).
Support for this hypothesis will be presented below. One  can rep-
resent these patterns of forces in principally the same way as the
patterns of shapes described in [8], Section 6.3. In analogy with
shapes, force patterns also have meronomic structure. For exam-
ple, a dog with short legs moves in a different way than a dog with
long legs.

This representation fits well into the general format of concep-
tual spaces presented by Gärdenfors [6,7]. In order to identify the
structure of the action domain, similarities between actions should
be investigated. This can be accomplished by basically the same
methods used for investigating similarities between objects. Just as
there, the dynamic properties of actions can be judged with respect
to similarities: for example, walking is more similar to running than
to waving. Very little is known about the geometric structure of the
action domain, except for a few recent studies that we will present
below. We  assume that the notion of betweenness is meaningful in
the action domain, allowing us to formulate the following thesis in
analogy to the thesis about properties (see [6,7,9]):

Thesis about action concepts: An action concept is represented as
a convex region in the action domain.
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